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1 Chapter 1: Special Relativity

2 Chapter 2: Vector Analysis in Special Relativity

Exercise 2.3: Prove Eq. (2.5)

Solution: By convention, Latin indices are not summed over 0 so if we are to interchange them with Greek
indices as a dummy index, we must perform the following:

AgAZﬂ = AJA2? + AT AL (1)

since Ag‘A:cﬁ implies a sum over all of the positive real numbers where AF Az’ is a sum over positive real numbers
not including zero.
Exercise 2.7a: Prove Eq. (2.10) for all o, 8

Solution: To verify that (€,)” = §2, consider an arbitrary basis vector, é,, meaning that the elements in its list
are all zero except for the single entry at the ath component. This can be written as:

€n=(..,0,0,1,0,...) (2)
Where the index of each value in the list can be traced with respect to «
(a—n,..,a—2,a—l,a,a+1,...,a+n) (3)

Then (€,)” indicates the 3th component of the basis vector €,. By the definition of a basis vector, we know that
all entries in €, are zero except the one at the ath component. So if we choose 3 to be any non-a index, the result
must be 0:

(€)' =0 (4)

It’s for this reason that we can define the Sth component of the €, basis vector to be equal to the Kronecker delta,
meaning that (€,)° = 1 only when o = f3.
Exercise 2.29: Prove, using component expressions, Eqs. (2.24) and (2.26), that

Solution: By (2.26):
U-U=-UW"+UU'+U%U? +U3U3

6
—(UO)2+(U1)2+(U2)2+(U3)2 (6)
and by (2.24):
Lo d = ~ d - L odU
. — 2 - . _ 2 — - -
U-U=U" = dT(U U) dT(U) 2U i (7)



3 Chapter 3: Tensor Analysis in Special Relativity

Exercise (3.1a): Given an arbitrary set of numbers {My,g;a = 0,...,3;8 = 0,...,3} and two arbitrary vector
components {A*, = 0,...,3} and {B”,v =0, ..., 3}, show that the two expressions

M5 A° B (8)
and
Moo A% B (9)
are not equivalent.
Solution:
Moo AYB® = MyA°B® + My, A'BY + M, A'BY + My, A B? (10)
where
MapA*B® = B?(MogA® + Mig A" + Mg A* + M5 A°) (11)

So Mo A“B® only contains the diagonal terms of M,z A% B?.
Exercise (3.1b): Show that A*BPn,s = —A°B% + A1B! + A2B? + A3B3

Solution:
Because
-1 0 0 O
0 1 0 O
TB= 10 0 1 0 (12)
0 0 0 1

Any component of AaBﬁna[; where a # 8 means multiplying A*B? by an off-diagonal component of Mg, Which
are all 0. Treating A% and B? as row/column matrices and carrying out their multiplication with Mo Will result in
—A°B? + A'B' + A?B? 4+ A3B3.

Exercise (3.3a): Prove, by writing out all of the terms, the validity of the following:

ﬁ(Aaéa) = Aaﬁ(éa) (13)

Solution:
Since one-forms act on vector arguments, the scalar values associated with A% may be pulled out of the expression

like so:
p(A%E,) = p(A%E0 + Alet + A%e% + A3E®) = p(A%) + p(Aley) + p(A2E,) + p(A3es)

00z 1> 2502 302 as(z (14)
= A"p(éo) + A'p(er)+ = A”p(e2) + A°p(es) = Ap(éa)
Exercise (3.5): Justify each step leading from Eqgs. (3.10a) to (3.10d).
Solution: To establish the frame-independence of A%p4:
A%pg = Adﬁ(ga)’
_'(i = Agé’;u
A¥ = AGAP (15)
- Adﬁ(_’a) = AE‘A%(A%EM) = AZ‘Q“A%A%(@M) = A%AgAﬁpu
and by Eq. (2.18): ) i
A%‘AgAﬁpu = 5gAﬁpu = Aﬁpg = A%y = Aﬁpﬁ (16)

which should not be a surprising result given that the one-form of a vector produces a scalar and scalars are invariant
quantities under Lorentz transformations.
Exercise (3.10a): Given a frame O whose coordinates are {z®}, show that:

ox®

Solution: Taking the partial with respect to ® means holding all terms in x constant except for the 8 index. When



a # f3, you are taking a partial of a fixed value (a constant), meaning your derivative will be equal to zero. When
you differentiate the 8 index with respect to 3, you will always get 1.
Exercise (3.10b): For any two frames, we have Eq. (3.18):

83?[3 B
or” _ 8 1
ox?® Aa (18)
Show that (a) and the chain rule imply
Bra _
AZAS =6 (19)
Solution: B
A=
Oxd’
5  Ox®
0z 0z 81:5
B — b 7
— Aalu = dx® dgh  Qzn P
Exercise (3.11a): Use the notation d¢/0z* = ¢ , to rewrite Egs. (3.14), (3.15), and (3.18).
Solution:
Eq. (3.14):
¢Ut+ ¢U“’+ ¢Uy+ ¢UZ:>¢>tUt+¢ U* +¢,UY+ ¢, U? (21)
ot ot ot ot
Eq. (3.15):
= 0p 0 0¢p 0 =
dgf) ? (8t 9 8.’1," aya 82 - d¢ 6_) (¢,ta¢,ma¢,ya¢,z> (22)
Eq. (3.18):
B
=M = o= Al (23)

Exercise (3.13): Prove, by geometric or algebraic arguments, that df is normal to surfaces of constant f.

Solution: If we consider any point P = (to, o, Yo, 20) along a parameterized level curve f(7) = ¢(t(7), z(7),y(7), 2(7) =
¢, then we can take the gradient to be as follows:

~ dt d d
df =06, | +06. | +06, 2| +06. —| =0 (24)
PdT T0 PdT T0 PdT T0 PdT T0
Since this is also the definition of the dot product between two vectors:
dt dx d dz
(00| 00| 00| 00| ) (G| 5 ] | )= (25)
P P P P dri., dri, dr|, dr{,

whose product is equal to zero, we can say that d f and f are normal to each other at every point along a level curve.
Exercise (3.14): Let p —o (1,1,0,0) and ¢ o (—1,0,1,0) be two one-forms. Prove, by trying two vectors A
and B as arguments, that p ® ¢ # ¢ ® p. Then find the components of p ®4q.
Solution: Since a one-form supplied with a vector argument: p(A) = p*A®, we can perform the following
operations to show p® ¢ # ¢ ® p:

p@q=p(A)i(B) = (A°+ A")(-B° + B) (26)
§@p=q(Dp(B) = (-4° + A*)(B° + BY)
Exercise (3.16a): Prove that h(,) defined by
T T .

is a symmetric tensor.



Solution: From Eq. (3.27), we know a tensor f is symmetric if:

f(A, B) = f(B, A)VA, B (28)
So if h is to be symmetric, then:
1 - 1 — -
3h(4.B) — Sh(B, A) =0 (29)

Let /Y: (AO,Al,AQ,Ag) and E = (Bo,Bl,B27B3) then:
|
*h(A, B) = §(A0B0 + AlBl + A2B2 + Ang) (30)

and
1. - - 1
*h(B, A) = §(BOA0 + BlAO + BQAQ + B3A3) (31)

and since multiplication is commutative, Eq. 21 must be true, meaning that h S)(/Y é) is a symmetric tensor.

4 Chapter 4: Perfect Fluids in Special Relativity

Exercise (4.7): Derive Eq. (4.21).
Solution: Using the fact that 7°% = pU*U? derived from Eq. (4.20), we can begin deriving the expressions in
Eq. (4.21):

% = pU°v’ =pm\/11_7 1_pv2
i i v pv'
A )
T — pUiy° = 11’_“;2
TV = pU't? = £ 711:2

Exercise (4.10): Take the limit of Eq. (4.35) for |[V]| << 1 to get dn/dt + d(nv') [z’ = 0
Solution: Beginning with Eq. (4.35):
0
oz™
With the knowledge that U® contains both spatial components and a temporal component, the previous expression
must be separated into two parts:

(nU*) =0 (33)

0 " 0 :
A Y = 4
2ty + 2 ) =0 (3
Using the expressions give on page 93 for U and U?, this becomes:
0 n 0 nv'
— | — — | —) =0 35
at(ﬁ_w)%xz (\/71—1}2) (32)
Then taking the limit where the speed is much less than 1 makes 1 — v% ~ 1 so this expression becomes:
on  d(nvt)
— —~ =0 36
ot ox? (36)
Exercise (4.12): Derive Eq. (4.37) from Eq. (4.36)
Solution: Eq. (4.36) is given as:
p 0 0 O
0 0 0
af p
T = 00 p o (37)
00 0 p
So we can prove Eq. (4.37) by checking all of the cases like so:
T()(] (,0 4 p)UOU() 4 7,7,] (38)



In the momentarily comoving reference frame (MCRF), U* = (—1,0,0,0) so we have:
T =p (39)

which is what is given in Eq. (3.36). This can be carried out for all cases to find that T% = 0, T°° = 0,T% = p, T =0
which satisfies Eq. (3.36) so Eq. (4.37) is a valid equation.

Exerc1se (4.17): We have defined o = U/;U”. B, Go to the relativistic limit (small velocity) and show that
a’ = 0' + (7 V)v? = Dv'/Dt where the operator D/Dt is the usual “total” or “advective” time derivative of fluid
dynamics.

Solution: Writing out an initial expression for a’ while again keeping in mind that U’ contains a temporal
component and spatial components:

. oU? ou? out . 9 v 1 0 v vl
i B _ 7 t j_ < v _ 4
et T et <¢1—v2>¢1—v2+axﬂ (\/1—112)\/1—1;2 0 U
Taking the non-relativistic limit:
. ovt ot
T = . J = 4
a En + 6xﬂv 0 (41)

And since v’ /dx7 is just the dot product between the ith velocity component and the spatial derivatives under the
Einstein summation convention, this expression becomes:

at =9+ (7 V)l (42)

Which is an expression defined to be the material or “advective” derivative used in fluid mechanics.

5 Chapter 5: Preface to Curvature

Exercise (5.3a): Show that the coordinate transformation (z,y) — (£,n) with £ =z and n = 1 violates Eq. (5.6).

Solution: For a transformation to be reasonable, it must assign all coordinates in the source (z,y) to distinct
coordinates in the target (£,7). This property will be satisfied if the Jacobian is non-zero, which is the definition
given by Eq. (5.6). So to show this transformation is not reasonable, it must be shown to violate Eq. (5.6):

det (gf};gi g%géj) = det (é 8) =0 (43)

So this transformation of coordinates is not reasonable.

Exercise (5.7): Calculate all elements of the transformation matrices Ag/ and AZ/ for the transformation from
Cartesian (z,y) - the unprimed indices - to polar (r, ) - the primed indices.

Solution: Since, by Eq. (5.8):

o _ (0&/0x 0E/oy\ _ (Or/dx Or/dy
A5 = (377/996 8n/8y) - (39/890 ao/ay) (44)

We can directly compute the transformation from Cartesian into Polar components by computing the terms of this
matrix (knowing that &(x,y) = r = /a2 + y? and n(x,y) = § = arctan(y/z) in polar coordinates). This results in:

s = (VEF V) - (e ) <4s>

22 +‘y2 22 +y? r r

Since AZ/ is defined as:

u _ (0x/0¢ Oy/OE\  (Ox/Or Oy/or
Ay = <6:v/5?7 ag/an> = <ax/ae ai/ae) (46)

in Eq. (5.13), the matrix is the following:

—rsinf rcosf

A’lf, _ ( cosﬂ sin 0 ) (47)



Exercise (5.8a): (Use the result of Exer.7.) Let f = 22 4+ y% + 2zy and in Cartesian Coordinates V —
(2% + 3y, y? + 3x), W — (1,1). Compute f as a function of r and 6, and find the components of V and W on the
polar basis, expressing them as functions of r and 6.

Solution: Expressmg f as a polar functlon is as s1mple as making the substitutions x = r cosf and y = sin ¥,
arriving at f =72+ 2r cosfsinf. To express V and W as polar functions, the same process can be applied. This
results in V = (72 cos? 0 4 3rsin 0,72 sin? § + 3r cos f) and W= (1,1). To express V and W in a polar basis, though,
you must use the transformations found in the previous problem:

o raltrB 5 _ (cosf  sin®\ (r7cos® 0+ 3rsing) _ 72(cos® @ + sin® @) + 67 sin 6 cos O
VE =AMV = V= (_Srm‘g st J \r?sin® 0+ 3rcosf) — \r(cos@sin® @ — cos? fsin6) + 3(cos? § — sin” 0)
(48)
> (cosf sinf) (1) cosf +sin @
W= (Srine COTS9> (1> o ((0089 —sinH)/r) (49)

Exercise (5.8b): Find the components of df in Cartesian Coordinates and obtain them in polars (i) by direct
calculation in polars, and (ii) by transforming components from Cartesian.

Solution: (i) To compute by direct calculation in polar: df = (0f/Or,0f/00) we can use the definition of f in
polar that was derived in part (a):

g = g (r* +2r? cos@'sin ) = 2r + 4r cosfsin§ (50)
r r
% ((;99 (r* +2r? cos @sin 0) = 2r* cos(26) (51)

(ii) To compute df by transforming components from Cartesian,

0p _0wds dyds __ of _dcdf Oyof
o6 " 0cor T ocoy  or oror  oroy (52)

0
a—‘: = cos 0(2z + 2y) +sinB(2z + 2y) = (cos @ + sin 0)(2r cos 6§ + 2rsinf) = 2r + 4rsin cos § (53)

Similarly:
of _ozof  oyof -
00 00 90x 000y
of
90
It should be noted that the expressions from (ii) match those derived from (i). y
Exercise (5.8¢): () Use the metric tensor in polar coordinates to find the polar components of the one-forms V'
and W associated with V and W. (ii) Obtain the polar components of V and W by transformation of their Cartesian
components.
Solution: (i) By Eq. (5.31), the metric tensor in polar coordinates is:

i = (o %) (56)

The metric in polar coordinates can be used to find the polar components of the one-forms by:
= 1 0 cos 6 + sin @ cosf + sin 6
_ B _ _
Wa = gasW" = (O 7’2) ((cos@ — sin 0)/7’) a (r(cos@ — sin 9)) (57)

The same can be done for V as computed in polar form from part (a) of this problem.
(ii) Using the transformation matrix Ag, to obtain V and W:

o« tira [ cosO sin 0 1\ [ cosf+sind
W= <—Tsin9 TCOSQ) <1) o <T(0059—sin9)) (58)

And the same process can be employed to solve for V. Note that V and W is just V and W in Cartesian coordinates
since the metric tensor in Cartesian coordinates is the identity matrix.

= (=7rsin6)(2z + 2y) + (rcos 0)(2z + 2y) = 2r cos f (55)



Exercise (5.11a): For the vector field V whose Cartesian components are (z2 + 3y,y? + 3x), compute V¢ 5 in
Cartesian.
Solution: Since V§ = oV /dx”:

va _ ovt/ox ovlijoy\  [(2z 3 (59)
B \ov2/ox ovioy) — \ 3 2y
Exercise (5.11b): Compute the transformation A“/ Aﬁ V4 to polars.

This computation is a straightforward usage of the transformation matrices A“ and Aﬁ from Cartesian to polar
coordinates derived in Exercise 5.7 and the polar form of V'3 found in the prev10us part to this problem. The order of

multiplication for these matrices should be noted, however, since computing A# Af V'3 would leave V5 unchanged.
Computing A% VgAf , results in:
’ cosf sin@\ (2rcosf 3 cos 6 sin 6
AloLz V%Af’ = (—Sine CosG) ( 3 : ) ( : >

= = 2rsin 6 —rsinf rcosf

_ (2(rcos® 6 + 3cos@sin 6 + rsin® ) — r(cosf —sinf) (—3siné + cos 0)(—3 + 2rsin o)
= (cos O —sin 0)(3 cos +3 sin §—r sin(20)) (_3 +rcosf+r sin@) sm(29)

T

Exercise (5.11c): Compute the components V’V‘ , directly in polars using the Christoffel symbols.
Solution: Since «, 8 € {z, y} in Cartesian coordinates, there will be four components to compute: Vo, V;f, 0> KZ.
Beginning with VT

ovr ovr

‘/,77:: ar +V#FZT&F¢:’T:VH:>‘/;: B +V9 gr
0 1
or - a;: = —sinfe; + cos ey = ;e?; = I}, =0 (61)
r 8VT a 2 3 .. 3 . 3 . 3 )
Vir o 0 (T (cos” 6 + sin 9)+67’SIH90089) = 2r(cos” 0 + sin” 0) + 6sin 6 cos 6
r r
1
; a or ,

1
62 (r(cos@sin® @ — cos® @sin 0) + 3(cos® @ — sin® #)) + = (r(cos Osin® § — cos® Osin @) + 3(cos® § —sin®9))  (62)
r T
(cos @ —sin ) (3 cos @ + 3sinh) — rsin(26)

—t ‘/7? = ,
ovr ovr
V= VI, = —rv?
0= 90 TV T g T (63)
= Vi = —r(cos —sin0)(—3cos 0 + 3sin ) + rsin(20)
vl 1
Vf; 20 + TVT = sin(20)(—3 + rcos 0 + rsind)) (64)
Exercise (5.11d): Compute the divergence V§ using results from part (a).

Solution: aye ove oy
Ve = 9 = oo + oy = 2(x + y) = 2r(cos b + sin h) (65)

Exercise (5.11e): Compute the divergence Vf‘, using results from either part (b) or (c).

Solution: ) gy gy
VHE =V 4V = + I, V" + 15V + 9,V + T v"
K ’ ’ 8 87‘ (66)
_ 9 + 78‘/0 + EVT = 2r(cosd + sin )
or " ap Tyl T TERETE
Exercise (5.11f): Compute the divergence V_Z , using Eq. (5.55) directly.
10 0
woo_ r 30 —
= 7'87"( rV’) 4+ GGV = 2r(cosd + sin ) (67)



(This and the majority of the results given for Exercise 5.11 were computed in Mathematica)
Exercise (5.12a): For the one-form field p whose Cartesian coordinates are (2% + 3y, y? + 3z), compute p, 5 in

Cartesian.
_(Prr Pro\ _ (2x 3\ _ [2rcos® 3
Pon = (Por Pee) B (3 2y> B ( 3 2rsinéd (68)

Solution:
Exercise (5.12b): Compute the transformation AZ/ Af,paﬂ to polars.

Solution:
A%, A pas = (M%) pa,pAl, = (2r(cos® 6 — Bcos Osin 6 + r? sin® ) ) (69)
Exercise (5.12¢): Compute the components Py directly in polars using the Christoffel symbols, Eq. (4.44),
in Eq. (5.62).
Solution: 9 5
Pr r 0 Dr
rir — Pror — FN == - rr - r = Dryp = (7 70
Prie = Pro = Pulos = 5= = 2l — ol Prir = (70)
Where p,. is the r-component of the one-form in a polar basis.
Opr . .
pr = 1%(cos® 0 + sin® @) + 6rsinfcos§ = p,.,. = ap = 27(cos® § + sin® @) 4 6sin f cos 6 (71)
r
Opy 0 Op, 1
g = —— — Prlog — Polg = - = 72
Prio = g — Pl —polg = 50 — —po (72)

Exercise (5.14): For the tensor whose polar coordinates are (A" = r2, A" = rsin g, A" = rcosf, A% = tan @),
compute in Eq. (5.65) in polars for all possible indices:

voarr = P47 perr yoarenn, = QT grear avag g ATTAT 4 AN,
87‘ 8T (73)
0A™ 0
,',,ATT = = — 2 = 2
=V or or (%) "
rr 9A™ TTAT Or AT TTAT rO AT
VQA =5 89 + A AT9 + A Agg + A AT‘G + A AOG
DA™ 9 (74)
= VoA = —r (A" + A™) + 50 —r(rcosf + rsinf) + 30 (r?*) = —r*(cos 6 + sin 0)
AT DA™ 1
rf __ rpr 00 rré ropo . 66 S ATT
VQA = 80 +A Fr9+A F00+A Fr9+A F00 89 ’I"(A )+’/‘(A ) (75)

— VyA™ = r(cosh —tan6 — 1)

And the five remaining computations for all possible indices (VA" V, A" V, A" ¥V, A% VyA%) can be computed
in exactly the same manner.

Exercise (5.16): Fill in all the missing steps leading from Eq. (5.74) to Eq. (5.75).

Solution: Starting with Eq. (5.72):

Japsn = Japp — Lapgvs — Lppgav (76)

And using the fact that g,/ /.5 = 0:

ga,ﬂ’,ll«/ — F(l;/ulgylﬁl —+ FEIH/ga/VI = gaﬁ,u = F(V)t,u.gyﬁ —+ Fgugau (77)

And since a, 3, u are dummy indices whose order can be rearranged in the previous expression, the following form
can be arrived at by switching the 5 and p indices:

oup = LapGup + Ljpgan (78)

And the following expression can be arrived at by switching o with 8 in Eq. (78) and multiplying the whole expression
by a negative sign:
9Bp,a = Fgaguu + FZQQBV = —9Bu,a = _Pgaguu - FZ,O(QBV (79)



We can now consider the addition of the three terms, gag,u; Gau,8: —98u,a:
Japu + Jap.p — 9ppma = Lapdvs + Thug0r + Tapup + Thpgor — Thagun — Thagpy (80)
And, using the fact that the indices of the metric can be interchanged (gg, = g.5), we arrive at:
9ap.n + Joup = 9owa = (Lo = i) gvs + (T = Tha) uu + (Tgu + Tip) Gaw (81)
Since the lower indices of the Christoffel symbols may be interchanged, this leaves us with:
9B+ Jau,8 — 98u,a = 213,900 (82)

Using the fact that inverting the metric just turns its covariant indices into contravariant indices (1/gq5 = g*°):

v 1 v
Tgu= §ga (9apu + Gap,8 — 9Bu.a) (83)

It’s important to remind the reader of the notation being used here to understand the meaning of this result. Recall
that ¢ o = 99 3o the previous expression becomes:

oz
1 av (6.9(15 ag@é# 89:6/1) (84)

FV = — —
B = o9 O+ OxP oz~

Meaning the Christoffel symbols can be written in terms of derivatives of the metric.
Exercise (5.18): Verify Eq. (5.78).
Solution: Since we are working in polar coordinates, €y ~é’B can only take on the forms €. - %ég, € Er, %ég . %é’g,

or %é’g - €. Since €y will always be orthogonal to €., meaning that é,. - €y = €y - €, = 0. This also tells us that
€y - €y = €, - €, = 1, satisfying the first part of Eq. (5.78):

é’@-é’BEg&B:(S&B (85)
A similar argument can be made to prove the second half of Eq. (5.78) since the basis differentials dr and df are

orthogonal to each other, resulting in

(:)&

. (:)’B = g@B — 5‘54,3 (86)
being a verified statement.

Exercise (5.22): Show that if U*V,V# = W#, then UV, V; = W
Solution: Recall the notation that VoV# = V. from Eq. (5.51). This turns the expression into:

Uevh =we (87)
We can then multiply both sides of the expression by the metric g,,3:
UgusVi = gusW? (88)
From Eq. (5.68), Va5 = GauV.3 so we can transform the left hand side of this expression to be:
U Vo = gusW? (89)
And we can finally use V,, = go, V" from Eq. (5.69) to simply the right side of the expression into:
UVya =W, (90)
And since p is just a dummy index, it can be changed for 3, resulted in the desired expression:

UV, Vs = Wy (91)



6 Chapter 6: Curved Manifolds

Exercise (6.6): Prove that the first term in Eq. (6.37) vanishes.
Solution: Starting with Eq. (6.37):

e = 59 (9ma = Guarp) + 59 P gapp (92)

We want to show that ¢*%gg, o = 9 gua,p to show that the first term vanishes. To do this, first use the fact that
the metric is symmetric so the its indices can be interchanged as in following step:

9*°98ua = 9" 9pu.a (93)
Then use the fact that the indices considered are dummy indices so the swap a — 8 & B — « can be made:

97980 = 9 gou.p (94)

And again use the fact that the metric is symmetric so the indices a and p can be interchanged:

9" gonp = 9*°Gua.p (95)

Reaching the desired result.
Exercise (6.8): Fill in the missing algebra leading to Eqgs. (6.40) and (6.42).
Solution: Starting from Eq. (6.38):
1

Fﬁa = §9aﬂgaﬁ,u (96)

We can swap the a and 3 indices on gap,, so that we can use Eq. (6.39):

1
9 = 99" 9o = Gy = 9% 98a (97)
as a substitution: 11
Ile = 559’“ (98)
And in a step that I really don’t understand, this becomes:
o 1
[l = (V=9)u (99)

V=g

resulting in Eq. (6.40).
With this, Eq. (5.49) can be used where 8 — « since this is just a dummy index and using the new definition of

I, in Eq. (6.40):

1
Ve =Va+ VT, = Va4 v (<) o
> ’ 2 5 \/?g( )IL ( )
v—g

Vo can then be multiplied by =g 50 that it can be combined with the other term in the expression:

Ve = J%fg (V=g +Voy=g,) (101)

And since the term in the parentheses is just the definition of the chain rule:

Va = —— (Vv (102)

1
V=9
Which results in Eq. (6.42).

Exercise (6.13a): Show that if A and B are parallel-transported along a curve, then g(A, B) = A- B is constant
on the curve.
Solution: If we parallel transport A and B along a curve, U, then the following condition is satisfied:

@ _ove dz?

_ Vet 1
dA Oxf d\ 0 (103)

10



for both A and B where % is the curve U. If we parallel transport A-B along the curve, then:

d o 0 o mas A28
ax (gaﬁA Bﬂ) = 928 (9a8A°B )ﬁ
(104)
| apaO9as L OV L, OB\ da”
B (A B Oxh + 9asB Oxh + gasd 8905) Y

Note that parallel transport requires the second and third term of this expression to equal zero and that the local
flatness theorem (gap,, = 0) requires the first term to equal zero, leaving us to conclude that A B is constant along
the curve U.

Exercise (6.13b): Conclude from this that if a geodesic is spacelike (or timelike or null) somewhere, it is
spacelike (or timelike or null) everywhere.

Solution: The conditions for determining whether a geodesic U | is spacelike, timelike, or null are given below:

<0 timelike
U-U={=0 null (105)
>0 spacelike

Since we have shown that U - U is constant, we know that if the geodesic is defined to be spacelike, timelike, or null
anywhere, it must satisfy this condition everywhere.

Exercise (6.14): The proper distance along a curve whose tangent is Vs given by Eq. (6.8). Show that if the
curve is a geodesic, then the proper length is an affine parameter. (Use the result of Exer. 13.)

Solution: From Eq. (6.8), the proper distance is defined to be:

A1
e:/ [V - V|Y2dx (106)
A

0

And since we know that V -V is a constant from Exer. (6.13), this integral will just result in V.V being multiplied

by the length of the line:
A

(= |V-V|1/2/ d\ = [V - V|12 (107)
Ao
And since an affine parameter is defined to be ¢ = aX + b on page 167 of the text, £ must be an affine parameter
with a = [V - V|/2 and b = 0 (since, again, V - V was found to be a constant from the previous exercise).
Exercise 6.19: Prove that ng = 0 for polar coordinates in the Euclidean plane. Use Eq. (5.44) or equivalent
results.
Solution: Using the definition of the Riemann curvature tensor given by Eq. (6.63):

0 0 - -
R%/‘”’ = wrﬂu - @Fgu + ngf ei% - ng BH’ (108)

Where the «, 3, i1, v, 0 indices will be summed over r, € in polar coordinates. It’s best to consider these sums in parts
since they will become so large. Starting with the first term in the expression for Rj

9 9 a @ a a 9 r 0 0 —2 2
S L8 = g (Tre + 170 + 15, +150) = o (T§ + T +T5,) = P (109)

And since the — 8?:V I'g,, component of the Riemann curvature tensor changes nothing but the sign of the result shown
above, 32:T'3, — 32T, = 0. Computing the T'g,,

', component of R,

re s, = Thel%, = Thel% + el + Tl = —3 (110)
And, again, since —I'g,I'g,, changes nothing but the sign of the previous result, | Pg,,l“gu = 0, resulting in
R§,,, = 0, which should be expected since we are computing the Riemann curvature tensor in the Euclidean plane,

which is defined to have no curvature.
Exercise (6.20): Fill in the algebra necessary to establish Eq. (6.73).
Solution: Starting from:
Vo VgVH# (111)
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And using the definition of a covariant derivative built in the previous chapter, specifically Eq. (5.48):

u ove U
VaVpV* = Va (g5 + VT, (112)

The covariant derivative with respect to a can then be distributed across this expression like so:

oV oVH ory, vy
VFM _ v vB FN 11
Ve (8:165 v VB) Oxah v oz R Oz (113)

And since we are considering these covariant derivatives in a locally inertial frame at some point, the T, 5 term goes
to zero but its partial derivative does not, leaving us with:

ove 0T

[
VaVsV Oxazh + oz~

(114)

Exercise (6.28a): Derive Eq. (6.19) by using the usual coordinate transformation from Cartesian to spherical
polars.
Solution: Using the transformation rule:

ey = A&, (115)
and the coordinates:
x = rsinf cos ¢ (116)
y = rsinfsin ¢ (117)
z=rcosf (118)

this implies that €, will be of the form:

s e Oy 02 (119)

= &, = sinf cos ¢&, + sin b sin e, + cos fe, (120)
and that & and €4 will be of the forms:

. or oy, 0z,

=T e Z 121
= 0 T a0 T ap° (121)
= €y = rcos e, + rcosfsin pe, — rsin e, (122)
Ey = —r sin fsin ¢, + rsin f cos ¢e, (123)
From these, the following terms can be computed:
g -& =1 (124)
y- €y =12 (125)
€y Es=rsin’0 (126)
(127)

— — —

and that €. -€p = €y €, = €€y = €y-€, = €g-€y = €y -€g = 0. These terms give the metric in spherical coordinates
the form:
0 0

1
Gop= [0 72 0 (128)
0 0 r2sin?6

Exercise (6.28b): Deduce from Eq. (6.19) that the metric of the surface of a sphere of radius r has components
Grr =12, gy = 72500, ggy = 0 in the usual spherical coordinates.
Solution: It’s clear from the metric shown in the previous expression that g,, = 72, gpp =T
Exercise (6.28c): Find the components g®# for the sphere.

25in% 9, and gop = 0.
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Solution: Since the metric for spherical coordinates is diagonal, its inverse will just invert the non-zero compo-
nents like so:

1 0 0
¢?=10 % 0 (129)
0 0 i

Exercise (6.33a): A three-sphere is the three-dimensional surface in four-dimensional Euclidean space (coor-
dinates x,y, z,w) given by the equation x? + y? + 22 + w? = 72, where 7 is the radius of the sphere. Define new
coordinates (7,6, ¢, x) by the equations w = rcosf, z = rsin xy cosf, x = rsin y sind cos ¢, and y = rsin y sin d sin ¢.
Show that (6, ¢, x) are coordinates for the sphere. These generalize the familiar polar coordinates.

Solution: To show that the (6, ¢, x) coordinates define a four-dimensional sphere, we must compute x? + y? +
22 + w?. If this result results in the radius of the sphere, r, then we have defined coordinates that describe it. This
computation is as follows:

22 4+ 3% + 2% + w? = r¥sin? ysin® 6 cos? ¢ 4 72 sin? y sin? O sin” ¢ + 2 sin® x cos? 0 + r2 cos? (130)

Using the trigonometric identity sin?7 + cos?n = 1 many times reduces this expression to the desired result that
22 + y? + 2% + w? = r, which means that our (8, ¢, x) coordinates do in fact define a four-dimensional sphere.
Exercise (6.33b): Show that the metric of the three-sphere of radius r has components in these coordinates
Gyx = T2, 900 = 1° sin? X> Jps = T° sin? ysin? 4, all other components vanishing. (Use the same method as in Exer.
28.)
Solution: Using the same method as in Exer. 28, it’s found that:

€, = sin x sin 0 cos ¢&; + sin x sin 0 sin ¢e,, + sin x cos 6¢, + cos x€y (131)
€p = rsin x cos @ cos ¢, + rsin x cos O sin pe, — rsin x sin e, (132)
€s = —rsin x sin 0€, + rsin x sin 0 cos ¢é, (133)
€, = rcos x sind cos g€, + r cos x sin 0 sin ¢€, + 7 cos x cos 0&, — 7 sin x€y (134)
Dotting all of these terms with each other results in the metric:
1 0 0 0
0 r2sin®f 0 0
9o = | 0 r2sin”® xsin?@ 0 (135)
0 0 0 r?
which is the desired result.
7 Chapter 7: Physics in a Curved Spacetime
Exercise (7.2): To first order in ¢, compute g for Eq. (7.8).
Solution: Eq. (7.8) gives the line element for the ordinary Newtonian potential to the first order to be:
ds? = —(14 2¢)dt?* + (1 — 2¢)(dz? + dy* + d2?) (136)
so the metric can be inferred to be:
—(14 29) 0 0 0
_ 0 (1—2¢) 0 0
Jap = 0 0 (1-26) 0 (137)
0 0 0 (1—-2¢)
Since this metric is diagonal, the inverse of it will just invert the components, meaning that:
-1
00 o
0 0 0
afB _ 1-2¢
g 0 0 L o (138)
1
0 0 0 53

Exercise (7.3): Calculate all the Christoffel symbols for the metric given by Eq. (7.8), to first order in ¢.
Assume ¢ is a general function of ¢, z,y, and z.
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Solution: Using Eq. (5.75), which allows us to compute the Christoffel symbols in terms of the metric and its
derivatives, the components of the Christoffel symbols can be computed. Take I'Z . for example. This would be
computed by:

1 1
Fim = 7gtm (gtm,w + gt;v,a: - ga:w,t) + 7gzm (gxw,w + gww,ax - gxw,a:)
2 2 (139)

1 1
+§gyz (gyl‘,z + Gyz,x — ga‘x,y) + igzx (gzx,a; + 9zx,x — gwx,z)

Which reduces nicely since the non-zero components of this metric are only found along the diagonal, meaning that
only g**, g*®, g¥¥, g°* will have non-zero components. This results in:

1 1 0Gua
qucgc = 7911 (gTr,x + Gozx — g’I"tT) = 79961; J
2 2 ox (140)
1 0 0

= 5(1 - 2¢)% (1-2¢)=—-(1- 2¢)%

And the other 63 components of I‘g# can be computed in the same way, using the simplifications used above.

8 Chapter 8: The Einstein Field Equations

Exercise (8.1): Show that Eq. (8.2) is a solution of Eq. (8.1) by the following method. Assume the point particle
to be at the origin, r = 0, and to produce a spherically symmetric field. Then use Gauss’ law on a sphere of radius
r to conclude

dp Gm
dr 12
Deduce Eq. (8.2) from this. (consider the behavior at infinity.)
Solution: First considering the acceleration experienced due to the gravitational field around this point particle,
one gets:

= — (141)
When considering the application of Gauss’ law to this object, it’s clear that the direction of ¢ will be opposite to

that of dA, meaning g - dA = —gdA. Using this in the integral form of Gauss’ law when the integrated area is the
surface area of a sphere concentric around the point at the origin:

¢://g*-dA’:—//gdA:g—4w2=—4me (142)

Since the integral form of Gauss’ law must be equal to the differential form:

/ / V. gdV = —4xGm (143)

Since mass is just the density of some object integrated over a volume:

// V. gdV = —47TG///pdV (144)

Which means by inspection that:

V.g=—4nGp (145)
Given the form of the scalar gravitational potential ¢ = Gm/r and Eq. (141), it’s clear that
d¢
__d¢ 146

And since ¢ is only a function of r, —d¢/dr = —V¢ which means we can simplify Eq. (145) to the desired form:
V2¢ = 4nGp (147)

Exercise (8.5a): Show that if hog = &0 g + &€8,q, then Eq. (8.25) vanishes.

14



Solution: Starting with Eq. (8.25):

(hw/ﬁu + hﬁu,av - hau,ﬁv - hﬁvyau) (148)

DN =

Raguw =

All for components of R,g,, must be computed in the following way to show that it vanishes:

hav,u = a,puv + Ev,apu (149)
hgpar = §g.au + Euapy (150)
—hap,pr = —8a,pur — Epaby (151)
—hgvan = —&p,a,uv — Ev,apu (152)

It’s apparent that when you add Eq. (115) - Eq. (118) together, you will get 0, meaning Ra g, = 0.

Exercise (8.5b): Argue from this that Eq. (8.25) is gauge invariant.

Solution: A gauge transformation is defined as a small change in coordinates where hog — hag — €08 — £8,a-
Since we have just shown that hag = £a,g + £, Tesults in Rapgu, = 0, if we use this expression for hqs in the gauge
transformation, we get hog — 0,8 +£8,a +&a.8 —£8,a, Which means that the gauge transformation becomes hog — 0.
Using this expression for the transformed coordinates in Eq. (8.25) will obviously result in Rqg,,, = 0, which means
that R, has been unchanged under this gauge transformation, meaning it is gauge invariant.

Exercise (8.6): Weak-field theory assumes g, = 1, + hy with |k, | < 1. Similarly ¢/ must be close to n#¥,
say gh¥ = " + 6g"v. Show from Exer. 4a that 6g"” = —h*" + O(h?). Thus, n**n*Ph.p is not the deviation of gh”
from flatness.

Solution: Start with the assumption that:

Juv = N + (WL;W (153)
and
g7 =" 4 6g"° (154)
then:
gul/guo = (nuu + 6hul/) (77}“7 + 6.9/“7) (155)

It is an identity that gaﬁgﬁ)‘ = 0, so, after multiplying the terms out, this expression becomes:
65 = ™ + M dg"” + hwn”” + hywdg”? (156)
We can use the identity n,57°* = 02 again to get:
Oy = 0 + 069" + hywn™ + hywdg”? (157)
So the 67 terms cancel out, leaving us with:
0 = 109" + huwn” + hudg”? (158)

Since we have assumed that |h,,| < 1 and also expect that [0g"7| < 1, we should expect that their product, h,, dg"”
should be nearly zero. This assumption allows us to drop this term in the previous expression so we get:

_nl“jégluf — h,anVU (159)

Solving for §g"? results in:
59" = " (160)

These two Minkowski metrics act to swap and raise the indices on h, so this gives us:
d0gh? = —h"? (161)

Which is the desired result. Notice that the exercise includes a O(h?) factor that would have remained in this
expression if I had not just taken h,, dg"*° out of the expression entirely.
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9 Chapter 9: Gravitational Radiation

Exercise (9.2): Show that the real and imaginary parts of Eq. (9.2) at a fixed spatial position {z?} oscillate
sinusoidally in time with frequency w = kY.
Solution: Starting with Eq. (9.2):
foB _ goB gikar® (162)

With the use of Euler’s formula, this becomes:
h? = A%P (cos(kax®) + isin(kqz®)) (163)
Isolating the o = 0 component in this expression leaves us with:
hB = AP (cos(koa®) + isin(kox®) + cos(k;a’) + isin(kiz?)) (164)
Which shows that h®® oscillates as a sinusoid in time with an angular frequency w = ko:

hP = AP (cos(wt) + isin(wt) + cos(k;a’) + isin(k;z")) (165)

10 Chapter 10: Spherical Solutions for Stars

Exercise (10.1): Starting with ds? = naﬁd:vo‘dxﬁ, show that the coordinate transformation r = /22 + y2 + 22,
0 = cos~'(z/r), ¢ = tan"!(y/x) leads to Eq. (10.1), ds? = —dt> + dr? + r?(d6? + sin® 0d¢?).

Solution: To derive this line element, we must first compute the metric for a flat spacetime in spherical coordi-
nates. This metric will follow the form:

€ € € -€ € -€ € -Ey
€€ €€ E--€E €€
gas=|o o LT T T (166)
p € €g-€Er €h- €9 €g-Ep
€¢ N €¢ €, €¢ €y €¢ . €¢
Since this transformation from Cartesian to spherical coordinates does not depend on t, €; will be of the form
(dt,0,0,0) and €; will be of the form (0, ...,...,...), which means that é; - & = 0. This turns our metric into:
€ - € 0 0 0
_ €€ €Er-€y €&y 167
Yap 0 &-& & - -y (167)
0 €y €Er €y €y €Ep-Ey

To compute €, €y, and €y, the transformation €, = Ag,é'ﬁ will be used with x = rsinf cos ¢, y = rsinfsin ¢, and
z =rcos:

(168)

= €, = sinf cos ¢é,, + sin b sin ¢péy, + cos 6¢,
fo= Lo+ Wa, 4+ Lz

T 90" 00 T 00"

= €p = 1 cos b cos ¢pé;, + r cos O sin ¢&, — rsinbe,

(169)

Ey= g+ g 4 22 170

= €, = —rsinfsin ¢, + rsin O cos Pe,
By direct computation, it can then be shown that € - €, = €, - €y = €, - €4 = €4 - €, = €y - €y = €4 - €9 = 0, which
are notably all of the off-diagonal elements in g,g. It can also then be shown by direct computation that €, - €, =1,
€y - €y =12, and €y - €y = r2sin? 0. This results in the metric:

-1 0 0 0
wi=o 0@ o an)
0 0 0 r’sin®0
Reading the line element ds? off of this metric results in:
ds® = —dt* + dr® + r* (d6” + sin® 0d¢?) (172)
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11 Chapter 12: Cosmology

Exercise (12.7a): Find the coordinate transformation leading to Eq. (12.20).

Solution: To consider the Robertson-Walker metric:

ds* = —dt* + a*(t) dr + r2dQ
1—kr2
and when k£ = —1 requires the coordinate transformation:
dr?
dx? =
X 1+ 72
This implies that
dv — dr
X V14712

Integrating this to get x(r) results in
x =sinh~!(r) = 7 =sinh(y)

With this transformation, the Robertson-Walker metric when & = —1 becomes:

ds* = —dt* + a®(t) (d* + sinh? (x)dQ)
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