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1 Chapter 1: Special Relativity

2 Chapter 2: Vector Analysis in Special Relativity

Exercise 2.3: Prove Eq. (2.5)

Solution: By convention, Latin indices are not summed over 0 so if we are to interchange them with Greek
indices as a dummy index, we must perform the following:

Λᾱ
β∆xβ = Λᾱ

0∆x0 + Λᾱ
i ∆xi (1)

since Λᾱ
β∆xβ implies a sum over all of the positive real numbers where Λᾱ

i ∆xi is a sum over positive real numbers
not including zero.
Exercise 2.7a: Prove Eq. (2.10) for all α, β

Solution: To verify that (e⃗α)
β = δβα, consider an arbitrary basis vector, e⃗α, meaning that the elements in its list

are all zero except for the single entry at the αth component. This can be written as:

e⃗α = (..., 0, 0, 1, 0, ...) (2)

Where the index of each value in the list can be traced with respect to α

(α− n, ..., α− 2, α− 1, α, α+ 1, ..., α+ n) (3)

Then (e⃗α)
β indicates the βth component of the basis vector e⃗α. By the definition of a basis vector, we know that

all entries in e⃗α are zero except the one at the αth component. So if we choose β to be any non-α index, the result
must be 0:

(e⃗α)
α−1 = 0 (4)

It’s for this reason that we can define the βth component of the e⃗α basis vector to be equal to the Kronecker delta,
meaning that (e⃗α)

β = 1 only when α = β.
Exercise 2.29: Prove, using component expressions, Eqs. (2.24) and (2.26), that

d

dτ
(U⃗ · U⃗) = 2U⃗ · dU⃗

dτ
(5)

Solution: By (2.26):

U⃗ · U⃗ = −U0U0 + U1U1 + U2U2 + U3U3

= −(U0)2 + (U1)2 + (U2)2 + (U3)2
(6)

and by (2.24):

U⃗ · U⃗ = U⃗2 =⇒ d

dτ
(U⃗ · U⃗) =

d

dτ
(U⃗2) = 2U⃗ · dU⃗

dτ
(7)
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3 Chapter 3: Tensor Analysis in Special Relativity

Exercise (3.1a): Given an arbitrary set of numbers {Mαβ ;α = 0, ..., 3;β = 0, ..., 3} and two arbitrary vector
components {Aµ, µ = 0, ..., 3} and {Bν , ν = 0, ..., 3}, show that the two expressions

MαβA
αBβ (8)

and
MααA

αBα (9)

are not equivalent.

Solution:
MααA

αBα = M00A
0B0 +M11A

1B1 +M1A
1B1 +M11A

1B1 (10)

where
MαβA

αBβ = Bβ(M0βA
0 +M1βA

1 +M2βA
2 +M3βA

3) (11)

So MααA
αBα only contains the diagonal terms of MαβA

αBβ .
Exercise (3.1b): Show that AαBβηαβ = −A0B0 +A1B1 +A2B2 +A3B3

Solution:
Because

ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (12)

Any component of AαBβηαβ where α ̸= β means multiplying AαBβ by an off-diagonal component of ηαβ , which
are all 0. Treating Aα and Bβ as row/column matrices and carrying out their multiplication with ηαβ will result in
−A0B0 +A1B1 +A2B2 +A3B3.
Exercise (3.3a): Prove, by writing out all of the terms, the validity of the following:

p̃(Aαe⃗α) = Aαp̃(e⃗α) (13)

Solution:
Since one-forms act on vector arguments, the scalar values associated with Aα may be pulled out of the expression
like so:

p̃(Aαe⃗α) = p̃(A0e⃗0 +A1e⃗1 +A2e⃗2 +A3e⃗3) = p̃(A0e⃗0) + p̃(A1e⃗1) + p̃(A2e⃗2) + p̃(A3e⃗3)

= A0p̃(e⃗0) +A1p̃(e⃗1)+ = A2p̃(e⃗2) +A3p̃(e⃗3) = Aαp̃(e⃗α)
(14)

Exercise (3.5): Justify each step leading from Eqs. (3.10a) to (3.10d).

Solution: To establish the frame-independence of Aᾱpᾱ:

Aᾱpᾱ = Aᾱp̃(e⃗ᾱ),

e⃗ᾱ = Λµ
ᾱe⃗µ,

Aᾱ = Λᾱ
βA

β

=⇒ Aᾱp̃(e⃗ᾱ) = Λᾱ
βA

β p̃(Λµ
ᾱe⃗µ) = Λᾱ

βΛ
µ
ᾱA

β p̃(e⃗µ) = Λᾱ
βΛ

µ
ᾱA

βpµ

(15)

and by Eq. (2.18):
Λᾱ
βΛ

µ
ᾱA

βpµ = δµβA
βpµ = Aβpβ =⇒ Aᾱpᾱ = Aβpβ (16)

which should not be a surprising result given that the one-form of a vector produces a scalar and scalars are invariant
quantities under Lorentz transformations.
Exercise (3.10a): Given a frame O whose coordinates are {xα}, show that:

∂xα

∂xβ
= δαβ (17)

Solution: Taking the partial with respect to xβ means holding all terms in x constant except for the β index. When
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α ̸= β, you are taking a partial of a fixed value (a constant), meaning your derivative will be equal to zero. When
you differentiate the β index with respect to β, you will always get 1.
Exercise (3.10b): For any two frames, we have Eq. (3.18):

∂xβ

∂xᾱ
= Λβ

ᾱ. (18)

Show that (a) and the chain rule imply

Λβ
ᾱΛ

ᾱ
µ = δβµ (19)

Solution:

Λβ
ᾱ =

∂xβ

∂xᾱ
,

Λᾱ
µ =

∂xᾱ

∂xµ

=⇒ Λβ
ᾱΛ

ᾱ
µ =

∂xβ

∂xᾱ

∂xᾱ

∂xµ
=

∂xβ

∂xµ
= δβµ

(20)

Exercise (3.11a): Use the notation ∂ϕ/∂xα = ϕ,α to rewrite Eqs. (3.14), (3.15), and (3.18).

Solution:
Eq. (3.14):

∂ϕ

∂t
U t +

∂ϕ

∂t
Ux +

∂ϕ

∂t
Uy +

∂ϕ

∂t
Uz =⇒ ϕ,tU

t + ϕ,xU
x + ϕ,yU

y + ϕ,zU
z (21)

Eq. (3.15):

d̃ϕ −→
O

(
∂ϕ

∂t
,
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
=⇒ d̃ϕ −→

O
(ϕ,t, ϕ,x, ϕ,y, ϕ,z) (22)

Eq. (3.18):
∂xβ

∂xᾱ
= Λβ

ᾱ =⇒ xβ
,ᾱ = Λβ

ᾱ (23)

Exercise (3.13): Prove, by geometric or algebraic arguments, that d̃f is normal to surfaces of constant f .

Solution: If we consider any point P = (t0, x0, y0, z0) along a parameterized level curve f(τ) = ϕ(t(τ), x(τ), y(τ), z(τ) =
c, then we can take the gradient to be as follows:

d̃f = ∂ϕ,t

∣∣∣∣
P

dt

dτ

∣∣∣∣
τ0

+ ∂ϕ,x

∣∣∣∣
P

dx

dτ

∣∣∣∣
τ0

+ ∂ϕ,y

∣∣∣∣
P

dy

dτ

∣∣∣∣
τ0

+ ∂ϕ,z

∣∣∣∣
P

dz

dτ

∣∣∣∣
τ0

= 0 (24)

Since this is also the definition of the dot product between two vectors:〈
∂ϕ,t

∣∣∣∣
P

, ∂ϕ,x

∣∣∣∣
P

, ∂ϕ,y

∣∣∣∣
P

, ∂ϕ,z

∣∣∣∣
P

〉
·
〈
dt

dτ

∣∣∣∣
τ0

,
dx

dτ

∣∣∣∣
τ0

,
dy

dτ

∣∣∣∣
τ0

,
dz

dτ

∣∣∣∣
τ0

〉
= 0 (25)

whose product is equal to zero, we can say that d̃f and f are normal to each other at every point along a level curve.
Exercise (3.14): Let p̃ →O (1, 1, 0, 0) and q̃ →O (−1, 0, 1, 0) be two one-forms. Prove, by trying two vectors A⃗

and B⃗ as arguments, that p̃⊗ ˜q ̸= q̃ ⊗ p̃. Then find the components of p̃⊗ q̃.
Solution: Since a one-form supplied with a vector argument: p̃(A⃗) = pαAα, we can perform the following

operations to show p̃⊗ q̃ ̸= q̃ ⊗ p̃:

p̃⊗ q̃ = p̃(A⃗)q̃(B⃗) = (A0 +A1)(−B0 +B2)

q̃ ⊗ p̃ = q̃(A⃗)p̃(B⃗) = (−A0 +A2)(B0 +B1)
(26)

Exercise (3.16a): Prove that h(s) defined by

h(s)(A⃗, B⃗) =
1

2
h(A⃗, B⃗) +

1

2
h(B⃗, A⃗) (27)

is a symmetric tensor.
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Solution: From Eq. (3.27), we know a tensor f is symmetric if:

f(A⃗, B⃗) = f(B⃗, A⃗)∀A⃗, B⃗ (28)

So if h is to be symmetric, then:
1

2
h(A⃗, B⃗)− 1

2
h(B⃗, A⃗) = 0 (29)

Let A⃗ = (A0, A1, A2, A3) and B⃗ = (B0, B1, B2, B3) then:

1

2
h(A⃗, B⃗) =

1

2
(A0B0 +A1B1 +A2B2 +A3B3) (30)

and
1

2
h(B⃗, A⃗) =

1

2
(B0A0 +B1A0 +B2A2 +B3A3) (31)

and since multiplication is commutative, Eq. 21 must be true, meaning that h(s)(A⃗, B⃗) is a symmetric tensor.

4 Chapter 4: Perfect Fluids in Special Relativity

Exercise (4.7): Derive Eq. (4.21).
Solution: Using the fact that Tαβ = ρUαUβ derived from Eq. (4.20), we can begin deriving the expressions in

Eq. (4.21):

T 00 = ρU0U0 = ρ
1√

1− v2
1√

1− v2
=

ρ

1− v2

T 0i = ρU0U i = ρ
1√

1− v2
vi√

1− v2
=

ρvi

1− v2

T i0 = ρU iU0 =
ρvi

1− v2

T ij = ρU iU j =
ρvivj

1− v2

(32)

Exercise (4.10): Take the limit of Eq. (4.35) for |V⃗ | << 1 to get ∂n/∂t+ ∂(nvi)/∂xi = 0
Solution: Beginning with Eq. (4.35):

∂

∂xα
(nUα) = 0 (33)

With the knowledge that Uα contains both spatial components and a temporal component, the previous expression
must be separated into two parts:

∂

∂t

(
nU t

)
+

∂

∂xi

(
nU i

)
= 0 (34)

Using the expressions give on page 93 for U t and U i, this becomes:

∂

∂t

(
n√

1− v2

)
+

∂

∂xi

(
nvi√
1− v2

)
= 0 (35)

Then taking the limit where the speed is much less than 1 makes 1− v2 ≈ 1 so this expression becomes:

∂n

∂t
+

∂(nvi)

∂xi
= 0 (36)

Exercise (4.12): Derive Eq. (4.37) from Eq. (4.36)
Solution: Eq. (4.36) is given as:

Tαβ =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (37)

So we can prove Eq. (4.37) by checking all of the cases like so:

T 00 = (ρ+ p)U0U0 + rη00 (38)
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In the momentarily comoving reference frame (MCRF), Uα = (−1, 0, 0, 0) so we have:

T 00 = ρ (39)

which is what is given in Eq. (3.36). This can be carried out for all cases to find that T 0i = 0, T i0 = 0, T ii = p, T ij = 0
which satisfies Eq. (3.36) so Eq. (4.37) is a valid equation.

Exercise (4.17): We have defined aµ = Uµ
,βU

β . Go to the relativistic limit (small velocity) and show that

ai = v̇i + (v⃗ · ∇)vj = Dvi/Dt where the operator D/Dt is the usual “total” or “advective” time derivative of fluid
dynamics.

Solution: Writing out an initial expression for ai while again keeping in mind that U i contains a temporal
component and spatial components:

ai =
∂U i

∂xβ
Uβ =

∂U i

∂t
U t +

∂U i

∂xj
U j =

∂

∂t

(
vi√

1− v2

)
1√

1− v2
+

∂

∂xj

(
vi√

1− v2

)
vj√
1− v2

= 0 (40)

Taking the non-relativistic limit:

ai =
∂vi

∂t
+

∂vi

∂xj
vj = 0 (41)

And since ∂vi/∂xj is just the dot product between the ith velocity component and the spatial derivatives under the
Einstein summation convention, this expression becomes:

ai = v̇i + (v⃗ · ∇)vj (42)

Which is an expression defined to be the material or “advective” derivative used in fluid mechanics.

5 Chapter 5: Preface to Curvature

Exercise (5.3a): Show that the coordinate transformation (x, y) → (ξ, η) with ξ = x and η = 1 violates Eq. (5.6).
Solution: For a transformation to be reasonable, it must assign all coordinates in the source (x, y) to distinct

coordinates in the target (ξ, η). This property will be satisfied if the Jacobian is non-zero, which is the definition
given by Eq. (5.6). So to show this transformation is not reasonable, it must be shown to violate Eq. (5.6):

det

(
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)
= det

(
1 0
0 0

)
= 0 (43)

So this transformation of coordinates is not reasonable.
Exercise (5.7): Calculate all elements of the transformation matrices Λα′

β and Λν′

µ for the transformation from
Cartesian (x, y) - the unprimed indices - to polar (r, θ) - the primed indices.

Solution: Since, by Eq. (5.8):

Λα′

β =

(
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)
=

(
∂r/∂x ∂r/∂y
∂θ/∂x ∂θ/∂y

)
(44)

We can directly compute the transformation from Cartesian into Polar components by computing the terms of this
matrix (knowing that ξ(x, y) = r =

√
x2 + y2 and η(x, y) = θ = arctan(y/x) in polar coordinates). This results in:

Λα′

β =

(
x√

x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

)
=

(
cos θ sin θ
− sin θ

r
cos θ
r

)
(45)

Since Λν′

µ is defined as:

Λµ
ν′ =

(
∂x/∂ξ ∂y/∂ξ
∂x/∂η ∂y/∂η

)
=

(
∂x/∂r ∂y/∂r
∂x/∂θ ∂y/∂θ

)
(46)

in Eq. (5.13), the matrix is the following:

Λµ
ν′ =

(
cos θ sin θ

−r sin θ r cos θ

)
(47)
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Exercise (5.8a): (Use the result of Exer.7.) Let f = x2 + y2 + 2xy and in Cartesian Coordinates V⃗ →
(x2 + 3y, y2 + 3x), W⃗ → (1, 1). Compute f as a function of r and θ, and find the components of V⃗ and W⃗ on the
polar basis, expressing them as functions of r and θ.

Solution: Expressing f as a polar function is as simple as making the substitutions x = r cos θ and y = sin θ,
arriving at f = r2 + 2r2 cos θ sin θ. To express V⃗ and W⃗ as polar functions, the same process can be applied. This
results in V⃗ = (r2 cos2 θ+3r sin θ, r2 sin2 θ+3r cos θ) and W⃗ = (1, 1). To express V⃗ and W⃗ in a polar basis, though,
you must use the transformations found in the previous problem:

V α′
= Λα′

β V β =⇒ V⃗ =

(
cos θ sin θ
− sin θ

r
cos θ
r

)(
r2 cos2 θ + 3r sin θ
r2 sin2 θ + 3r cos θ

)
=

(
r2(cos3 θ + sin3 θ) + 6r sin θ cos θ

r(cos θ sin2 θ − cos2 θ sin θ) + 3(cos2 θ − sin2 θ)

)
(48)

W⃗ =

(
cos θ sin θ
− sin θ

r
cos θ
r

)(
1
1

)
=

(
cos θ + sin θ

(cos θ − sin θ)/r

)
(49)

Exercise (5.8b): Find the components of d̃f in Cartesian Coordinates and obtain them in polars (i) by direct
calculation in polars, and (ii) by transforming components from Cartesian.

Solution: (i) To compute by direct calculation in polar: d̃f = (∂f/∂r, ∂f/∂θ) we can use the definition of f in
polar that was derived in part (a):

∂f

∂r
=

∂

∂r

(
r2 + 2r2 cos θ sin θ

)
= 2r + 4r cos θ sin θ (50)

∂f

∂θ
=

∂

∂θ

(
r2 + 2r2 cos θ sin θ

)
= 2r2 cos(2θ) (51)

(ii) To compute d̃f by transforming components from Cartesian,

∂ϕ

∂ξ
=

∂x

∂ξ

∂ϕ

∂x
+

∂y

∂ξ

∂ϕ

∂y
=⇒ ∂f

∂r
=

∂x

∂r

∂f

∂x
+

∂y

∂r

∂f

∂y
(52)

∂f

∂r
= cos θ(2x+ 2y) + sin θ(2x+ 2y) = (cos θ + sin θ)(2r cos θ + 2r sin θ) = 2r + 4r sin θ cos θ (53)

Similarly:
∂f

∂θ
=

∂x

∂θ

∂f

∂x
+

∂y

∂θ

∂f

∂y
(54)

∂f

∂θ
= (−r sin θ)(2x+ 2y) + (r cos θ)(2x+ 2y) = 2r2 cos θ (55)

It should be noted that the expressions from (ii) match those derived from (i).
Exercise (5.8c): (i) Use the metric tensor in polar coordinates to find the polar components of the one-forms Ṽ

and W̃ associated with V⃗ and W⃗ . (ii) Obtain the polar components of Ṽ and W̃ by transformation of their Cartesian
components.

Solution: (i) By Eq. (5.31), the metric tensor in polar coordinates is:

gαβ =

(
1 0
0 r2

)
(56)

The metric in polar coordinates can be used to find the polar components of the one-forms by:

W̃α = gαβW
β =

(
1 0
0 r2

)(
cos θ + sin θ

(cos θ − sin θ)/r

)
=

(
cos θ + sin θ

r(cos θ − sin θ)

)
(57)

The same can be done for V⃗ as computed in polar form from part (a) of this problem.
(ii) Using the transformation matrix Λα

β′ to obtain Ṽ and W̃ :

Λα
β′W̃α =

(
cos θ sin θ

−r sin θ r cos θ

)(
1
1

)
=

(
cos θ + sin θ

r(cos θ − sin θ)

)
(58)

And the same process can be employed to solve for Ṽ . Note that Ṽ and W̃ is just V⃗ and W⃗ in Cartesian coordinates
since the metric tensor in Cartesian coordinates is the identity matrix.
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Exercise (5.11a): For the vector field V⃗ whose Cartesian components are (x2 + 3y, y2 + 3x), compute V α
,β in

Cartesian.
Solution: Since V α

,β ≡ ∂V α/∂xβ :

V α
,β =

(
∂V 1/∂x ∂V 1/∂y
∂V 2/∂x ∂V 2/∂y

)
=

(
2x 3
3 2y

)
(59)

Exercise (5.11b): Compute the transformation Λµ
′

α Λβ

ν′V α
,β to polars.

This computation is a straightforward usage of the transformation matrices Λµ
′

α and Λβ

ν′ from Cartesian to polar
coordinates derived in Exercise 5.7 and the polar form of V α

,β found in the previous part to this problem. The order of

multiplication for these matrices should be noted, however, since computing Λµ
′

α Λβ

ν′V α
,β would leave V α

,β unchanged.

Computing Λµ
′

α V α
,βΛ

β

ν′ results in:

Λµ
′

α V α
,βΛ

β

ν′ =

(
cos θ sin θ
− sin θ

r
cos θ
r

)(
2r cos θ 3

3 2r sin θ

)(
cos θ sin θ

−r sin θ r cos θ

)
=

(
2(r cos3 θ + 3 cos θ sin θ + r sin3 θ)− r(cos θ − sin θ) (−3 sin θ + cos θ)(−3 + 2r sin θ)

(cos θ−sin θ)(3 cos θ+3 sin θ−r sin(2θ))
r (−3 + r cos θ + r sin θ) sin(2θ)

) (60)

Exercise (5.11c): Compute the components V µ
′

;ν′ directly in polars using the Christoffel symbols.

Solution: Since α, β ∈ {x, y} in Cartesian coordinates, there will be four components to compute: V r
;r, V

θ
;r, V

r
;θ, V

θ
;θ.

Beginning with V r
;r:

V r
;r =

∂V r

∂r
+ V µΓr

µr & Γµ
rr = ∀µ =⇒ V r

;r =
∂V r

∂r
+ V θΓr

θr

Γr
θr :

∂e⃗θ
∂r

= − sin θe⃗x + cos θe⃗y =
1

r
e⃗θ =⇒ Γr

θr = 0

=⇒ V r
;r =

∂V r

∂r
=

∂

∂r

(
r2(cos3 θ + sin3 θ) + 6r sin θ cos θ

)
= 2r(cos3 θ + sin3 θ) + 6 sin θ cos θ

(61)

V θ
;r =

∂V θ

∂r
+ V µΓθ

µr =
∂V θ

∂r
+

1

r
V θ =

∂

∂r

(
r(cos θ sin2 θ − cos2 θ sin θ) + 3(cos2 θ − sin2 θ)

)
+

1

r

(
r(cos θ sin2 θ − cos2 θ sin θ) + 3(cos2 θ − sin2 θ)

)
=⇒ V θ

;r =
(cos θ − sin θ)(3 cos θ + 3 sin θ)− r sin(2θ)

r

(62)

V r
;θ =

∂V r

∂θ
+ V µΓr

µθ =
∂V r

∂θ
− rV θ

=⇒ V r
;θ = −r(cos θ − sin θ)(−3 cos θ + 3 sin θ) + r sin(2θ)

(63)

V θ
;θ =

∂V θ

∂θ
+

1

r
V r = sin(2θ)(−3 + r cos θ + r sin θ)) (64)

Exercise (5.11d): Compute the divergence V α
,α using results from part (a).

Solution:

V α
,α =

∂V α

∂xα
=

∂V x

∂x
+

∂V y

∂y
= 2(x+ y) = 2r(cos θ + sin θ) (65)

Exercise (5.11e): Compute the divergence V µ
′

;µ′ using results from either part (b) or (c).

Solution:

V µ
′

;µ′ = V r
;r + V θ

;θ =
∂V r

∂r
+ Γr

rrV
r + Γr

θrV
θ +

∂V r

∂r
+ Γθ

θθV
θ + Γθ

rθV
r

=
∂V r

∂r
+

∂V θ

∂θ
+

1

r
V r = 2r(cos θ + sin θ)

(66)

Exercise (5.11f): Compute the divergence V µ
′

;µ′ using Eq. (5.55) directly.

V µ
′

;µ′ =
1

r

∂

∂r
(rV r) +

∂

∂θ
V θ = 2r(cos θ + sin θ) (67)
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(This and the majority of the results given for Exercise 5.11 were computed in Mathematica)
Exercise (5.12a): For the one-form field p̃ whose Cartesian coordinates are (x2 + 3y, y2 + 3x), compute pα,β in

Cartesian.
Solution:

pα,β =

(
prr prθ
pθr pθθ

)
=

(
2x 3
3 2y

)
=

(
2r cos θ 3

3 2r sin θ

)
(68)

Exercise (5.12b): Compute the transformation Λα
µ′Λ

β

ν′pα,β to polars.

Solution:
Λα
µ′Λ

β

ν′pα,β = (Λα
µ′ )T pα,βΛ

β

ν′ =
(
2r(cos3 θ − 3 cos θ sin θ + r2 sin3 θ)

)
(69)

Exercise (5.12c): Compute the components pµ′ ;ν′ directly in polars using the Christoffel symbols, Eq. (4.44),
in Eq. (5.62).

Solution:

pr;r = pr,r − pµΓ
µ
αβ =

∂pr
∂r

− prΓ
r
rr − pθΓ

θ
rr =⇒ pr;r =

∂pr
∂r

(70)

Where pr is the r-component of the one-form in a polar basis.

pr = r2(cos3 θ + sin3 θ) + 6r sin θ cos θ =⇒ pr;r =
∂pr
∂r

= 2r(cos3 θ + sin3 θ) + 6 sin θ cos θ (71)

pr;θ =
∂pr
∂θ

− prΓ
r
rθ − pθΓ

θ
rθ =

∂pr
∂θ

− 1

r
pθ (72)

Exercise (5.14): For the tensor whose polar coordinates are (Arr = r2, Arθ = r sin θ,Aθr = r cos θ,Aθθ = tan θ),
compute in Eq. (5.65) in polars for all possible indices:

∇rA
rr =

∂Arr

∂r
+AαrΛr

αr +ArαΛr
αr =

∂Arr

∂r
+ArrΛr

rr +AθrΛr
θr +ArrΛr

rr +ArθΛr
θr

=⇒ ∇rA
rr =

∂Arr

∂r
=

∂

∂r

(
r2
)
= 2r

(73)

∇θA
rr =

∂Arr

∂θ
+ArrΛr

rθ +AθrΛr
θθ +ArrΛr

rθ +ArθΛr
θθ

=⇒ ∇θA
rr = −r

(
Aθr +Arθ

)
+

∂Arr

∂θ
= −r(r cos θ + r sin θ) +

∂

∂θ

(
r2
)
= −r2(cos θ + sin θ)

(74)

∇θA
rθ =

∂Arθ

∂θ
+ArθΓr

rθ +AθθΓr
θθ +ArrΓθ

rθ +ArθΓθ
θθ =

∂Arθ

∂θ
− r(Aθθ) +

1

r
(Arr)

=⇒ ∇θA
rθ = r(cos θ − tan θ − 1)

(75)

And the five remaining computations for all possible indices (∇rA
rθ,∇rA

θr,∇θA
θr,∇rA

θθ,∇θA
θθ) can be computed

in exactly the same manner.
Exercise (5.16): Fill in all the missing steps leading from Eq. (5.74) to Eq. (5.75).
Solution: Starting with Eq. (5.72):

gαβ;µ = gαβ,µ − Γν
αµgνβ − Γν

βµgαν (76)

And using the fact that gα′µ′ ;β′ = 0:

gα′β′ ,µ′ = Γν
′

α′µ′ gν′β′ + Γν
′

β′µ′ gα′ν′ =⇒ gαβ,µ = Γν
αµgνβ + Γν

βµgαν (77)

And since α, β, µ are dummy indices whose order can be rearranged in the previous expression, the following form
can be arrived at by switching the β and µ indices:

gαµ,β = Γν
αβgνµ + Γν

µβgαν (78)

And the following expression can be arrived at by switching α with β in Eq. (78) and multiplying the whole expression
by a negative sign:

gβµ,α = Γν
βαgνµ + Γν

µαgβν =⇒ −gβµ,α = −Γν
βαgνµ − Γν

µαgβν (79)
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We can now consider the addition of the three terms, gαβ,µ, gαµ,β ,−gβµ,α:

gαβ,µ + gαµ,β − gβµ,α = Γν
αµgνβ + Γν

βµgαν + Γν
αβgνµ + Γν

µβgαν − Γν
βαgνµ − Γν

µαgβν (80)

And, using the fact that the indices of the metric can be interchanged (gβν = gνβ), we arrive at:

gαβ,µ + gαµ,β − gβµ,α =
(
Γν
αµ − Γν

µα

)
gνβ +

(
Γν
αβ − Γν

βα

)
gνµ +

(
Γν
βµ + Γν

µβ

)
gαν (81)

Since the lower indices of the Christoffel symbols may be interchanged, this leaves us with:

gαβ,µ + gαµ,β − gβµ,α = 2Γν
βµgαν (82)

Using the fact that inverting the metric just turns its covariant indices into contravariant indices (1/gαβ = gαβ):

Γν
βµ =

1

2
gαν (gαβ,µ + gαµ,β − gβµ,α) (83)

It’s important to remind the reader of the notation being used here to understand the meaning of this result. Recall
that ϕ,α ≡ ∂ϕ

∂xα so the previous expression becomes:

Γν
βµ =

1

2
gαν

(
∂gαβ
∂xµ

+
∂gαµ
∂xβ

− ∂gβµ
∂xα

)
(84)

Meaning the Christoffel symbols can be written in terms of derivatives of the metric.
Exercise (5.18): Verify Eq. (5.78).
Solution: Since we are working in polar coordinates, e⃗α̂ · e⃗β̂ can only take on the forms e⃗r · 1r e⃗θ, e⃗r · e⃗r,

1
r e⃗θ ·

1
r e⃗θ,

or 1
r e⃗θ · e⃗r. Since e⃗θ will always be orthogonal to e⃗r, meaning that e⃗r · e⃗θ = e⃗θ · e⃗r = 0. This also tells us that

e⃗θ · e⃗θ = e⃗r · e⃗r = 1, satisfying the first part of Eq. (5.78):

e⃗α̂ · e⃗β̂ ≡ gα̂β̂ = δα̂β̂ (85)

A similar argument can be made to prove the second half of Eq. (5.78) since the basis differentials d̃r and d̃θ are
orthogonal to each other, resulting in

ω̃α̂ · ω̃β̂ ≡ gα̂β̂ = δα̂β̂ (86)

being a verified statement.
Exercise (5.22): Show that if Uα∇αV

β = W β , then Uα∇αVβ = Wβ

Solution: Recall the notation that ∇αV
β ≡ V β

;α from Eq. (5.51). This turns the expression into:

UαV β
;α = W β (87)

We can then multiply both sides of the expression by the metric gµβ :

UαgµβV
β
;α = gµβW

β (88)

From Eq. (5.68), Vα;β = gαµV
α
;β so we can transform the left hand side of this expression to be:

UαVµ;α = gµβW
β (89)

And we can finally use Vα = gαµV
µ from Eq. (5.69) to simply the right side of the expression into:

UαVµ;α = Wµ (90)

And since µ is just a dummy index, it can be changed for β, resulted in the desired expression:

Uα∇αVβ = Wβ (91)
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6 Chapter 6: Curved Manifolds

Exercise (6.6): Prove that the first term in Eq. (6.37) vanishes.
Solution: Starting with Eq. (6.37):

Γα
µα =

1

2
gαβ(gβµ,α − gµα,β) +

1

2
gαβgαβ,µ (92)

We want to show that gαβgβµ,α = gαβgµα,β to show that the first term vanishes. To do this, first use the fact that
the metric is symmetric so the its indices can be interchanged as in following step:

gαβgβµ,α =⇒ gβαgβµ,α (93)

Then use the fact that the indices considered are dummy indices so the swap α → β & β → α can be made:

gβαgβµ,α =⇒ gαβgαµ,β (94)

And again use the fact that the metric is symmetric so the indices α and µ can be interchanged:

gαβgαµ,β =⇒ gαβgµα,β (95)

Reaching the desired result.
Exercise (6.8): Fill in the missing algebra leading to Eqs. (6.40) and (6.42).
Solution: Starting from Eq. (6.38):

Γα
µα =

1

2
gαβgαβ,µ (96)

We can swap the α and β indices on gαβ,µ so that we can use Eq. (6.39):

g,µ = ggαβgβα,µ =⇒ g,µ
1

g
= gαβgβα,µ (97)

as a substitution:

Γα
µα =

1

2

1

g
g,µ (98)

And in a step that I really don’t understand, this becomes:

Γα
µα =

1√
−g

(
√
−g)µ (99)

resulting in Eq. (6.40).
With this, Eq. (5.49) can be used where β → α since this is just a dummy index and using the new definition of

Γα
µα in Eq. (6.40):

V α
;α = V α

,α + V µΓα
µα = V α

,α + V µ

(
1√
−g

(
√
−g)µ

)
(100)

V α
,α can then be multiplied by

√
−g√
−g

so that it can be combined with the other term in the expression:

V α
;α =

1√
−g

(√
−gV α

,α + V α√−gµ
)

(101)

And since the term in the parentheses is just the definition of the chain rule:

V α
;α =

1√
−g

(√
−gV α

)
α

(102)

Which results in Eq. (6.42).

Exercise (6.13a): Show that if A⃗ and B⃗ are parallel-transported along a curve, then g(A⃗, B⃗) = A⃗ · B⃗ is constant
on the curve.

Solution: If we parallel transport A⃗ and B⃗ along a curve, U⃗ , then the following condition is satisfied:

dV⃗

dλ
=

∂V α

∂xβ

dxβ

dλ
= 0 (103)
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for both A⃗ and B⃗ where dxβ

dλ is the curve U⃗ . If we parallel transport A⃗ · B⃗ along the curve, then:

d

dλ

(
gαβA

αBβ
)
=

∂

∂xβ
(gαβA

αBα)
dxβ

dλ

=

(
AαBα ∂gαβ

∂xβ
+ gαβB

α ∂V
α

∂xβ
+ gαβA

α ∂B
α

∂xβ

)
dxβ

dλ

(104)

Note that parallel transport requires the second and third term of this expression to equal zero and that the local
flatness theorem (gαβ,γ = 0) requires the first term to equal zero, leaving us to conclude that A⃗ · B⃗ is constant along

the curve U⃗ .
Exercise (6.13b): Conclude from this that if a geodesic is spacelike (or timelike or null) somewhere, it is

spacelike (or timelike or null) everywhere.

Solution: The conditions for determining whether a geodesic U⃗ | is spacelike, timelike, or null are given below:

U⃗ · U⃗ =


< 0 timelike

= 0 null

> 0 spacelike

(105)

Since we have shown that U⃗ · U⃗ is constant, we know that if the geodesic is defined to be spacelike, timelike, or null
anywhere, it must satisfy this condition everywhere.

Exercise (6.14): The proper distance along a curve whose tangent is V⃗ is given by Eq. (6.8). Show that if the
curve is a geodesic, then the proper length is an affine parameter. (Use the result of Exer. 13.)

Solution: From Eq. (6.8), the proper distance is defined to be:

ℓ =

∫ λ1

λ0

|V⃗ · V⃗ |1/2dλ (106)

And since we know that V⃗ · V⃗ is a constant from Exer. (6.13), this integral will just result in V⃗ · V⃗ being multiplied
by the length of the line:

ℓ = |V⃗ · V⃗ |1/2
∫ λ1

λ0

dλ = |V⃗ · V⃗ |1/2λ (107)

And since an affine parameter is defined to be ϕ = aλ + b on page 167 of the text, ℓ must be an affine parameter
with a = |V⃗ · V⃗ |1/2 and b = 0 (since, again, V⃗ · V⃗ was found to be a constant from the previous exercise).

Exercise 6.19: Prove that Rα
βµν = 0 for polar coordinates in the Euclidean plane. Use Eq. (5.44) or equivalent

results.
Solution: Using the definition of the Riemann curvature tensor given by Eq. (6.63):

Rα
βµν =

∂

∂xµ
Γβν − ∂

∂xν
Γα
βµ + Γα

σµΓ
σ
βν − Γα

σνΓ
σ
βµ (108)

Where the α, β, µ, ν, σ indices will be summed over r, θ in polar coordinates. It’s best to consider these sums in parts
since they will become so large. Starting with the first term in the expression for Rα

βµν :

∂

∂xµ
Γβν =

∂

∂xµ
(Γα

rr + Γα
rθ + Γα

θr + Γα
θθ) =

∂

∂xµ

(
Γr
θ + Γθ

rθ + Γθ
θr

)
=

−2

r2
− r2 (109)

And since the − ∂
∂xν Γ

α
βµ component of the Riemann curvature tensor changes nothing but the sign of the result shown

above, ∂
∂xµΓβν − ∂

∂xν Γ
α
βµ = 0. Computing the Γα

σµΓ
σ
βν component of Rα

βµν :

Γα
σµΓ

σ
βν = Γr

θθΓ
θ
βν = Γr

θθΓ
θ
rθ + Γr

θθΓ
θ
θr + Γθ

rθΓ
r
θθ = −3 (110)

And, again, since −Γα
σνΓ

σ
βµ changes nothing but the sign of the previous result, Γα

σµΓ
σ
βν − Γα

σνΓ
σ
βµ = 0, resulting in

Rα
βµν = 0, which should be expected since we are computing the Riemann curvature tensor in the Euclidean plane,

which is defined to have no curvature.
Exercise (6.20): Fill in the algebra necessary to establish Eq. (6.73).
Solution: Starting from:

∇α∇βV
µ (111)
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And using the definition of a covariant derivative built in the previous chapter, specifically Eq. (5.48):

∇α∇βV
µ = ∇α

(
∂V µ

∂xβ
+ V νΓµ

νβ

)
(112)

The covariant derivative with respect to α can then be distributed across this expression like so:

∇α

(
∂V µ

∂xβ
+ V νΓµ

νβ

)
=

∂V µ

∂xαxβ
+ V ν

∂Γµ
νβ

∂xα
+ Γµ

νβ

∂V ν

∂xα
(113)

And since we are considering these covariant derivatives in a locally inertial frame at some point, the Γµ
νβ term goes

to zero but its partial derivative does not, leaving us with:

∇α∇βV
µ =

∂V µ

∂xαxβ
+ V ν

∂Γµ
νβ

∂xα
(114)

Exercise (6.28a): Derive Eq. (6.19) by using the usual coordinate transformation from Cartesian to spherical
polars.

Solution: Using the transformation rule:
e⃗β′ = Λβ′

α e⃗β (115)

and the coordinates:

x = r sin θ cosϕ (116)

y = r sin θ sinϕ (117)

z = r cos θ (118)

this implies that e⃗r will be of the form:

e⃗r =
∂x

∂r
e⃗x +

∂y

∂r
e⃗y +

∂z

∂r
e⃗z (119)

=⇒ e⃗r = sin θ cosϕe⃗x + sin θ sinϕe⃗y + cos θe⃗z (120)

and that e⃗θ and e⃗ϕ will be of the forms:

e⃗θ =
∂x

∂rθ
e⃗x +

∂y

∂θ
e⃗y +

∂z

∂θ
e⃗z (121)

=⇒ e⃗θ = r cos θe⃗x + r cos θ sinϕe⃗y − r sin θe⃗z (122)

e⃗ϕ = −r sin θ sinϕe⃗x + r sin θ cosϕe⃗y (123)

From these, the following terms can be computed:

e⃗r · e⃗r = 1 (124)

e⃗θ · e⃗θ = r2 (125)

e⃗ϕ · e⃗ϕ = r2 sin2 θ (126)

(127)

and that e⃗r · e⃗θ = e⃗θ · e⃗r = e⃗r · e⃗ϕ = e⃗ϕ · e⃗r = e⃗θ · e⃗ϕ = e⃗ϕ · e⃗θ = 0. These terms give the metric in spherical coordinates
the form:

gαβ =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 (128)

Exercise (6.28b): Deduce from Eq. (6.19) that the metric of the surface of a sphere of radius r has components
grr = r2, gϕϕ = r2 sin2 θ, gθϕ = 0 in the usual spherical coordinates.

Solution: It’s clear from the metric shown in the previous expression that grr = r2, gϕϕ = r2 sin2 θ, and gθϕ = 0.
Exercise (6.28c): Find the components gαβ for the sphere.
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Solution: Since the metric for spherical coordinates is diagonal, its inverse will just invert the non-zero compo-
nents like so:

gαβ =

1 0 0
0 1

r2 0
0 0 1

r2 sin2 θ

 (129)

Exercise (6.33a): A three-sphere is the three-dimensional surface in four-dimensional Euclidean space (coor-
dinates x, y, z, w) given by the equation x2 + y2 + z2 + w2 = r2, where r is the radius of the sphere. Define new
coordinates (r, θ, ϕ, χ) by the equations w = r cos θ, z = r sinχ cos θ, x = r sinχ sin θ cosϕ, and y = r sinχ sin θ sinϕ.
Show that (θ, ϕ, χ) are coordinates for the sphere. These generalize the familiar polar coordinates.

Solution: To show that the (θ, ϕ, χ) coordinates define a four-dimensional sphere, we must compute x2 + y2 +
z2 + w2. If this result results in the radius of the sphere, r, then we have defined coordinates that describe it. This
computation is as follows:

x2 + y2 + z2 + w2 = r2 sin2 χ sin2 θ cos2 ϕ+ r2 sin2 χ sin2 θ sin2 ϕ+ r2 sin2 χ cos2 θ + r2 cos2 χ (130)

Using the trigonometric identity sin2 η + cos2 η = 1 many times reduces this expression to the desired result that
x2 + y2 + z2 + w2 = r, which means that our (θ, ϕ, χ) coordinates do in fact define a four-dimensional sphere.

Exercise (6.33b): Show that the metric of the three-sphere of radius r has components in these coordinates
gχχ = r2, gθθ = r2 sin2 χ, gϕϕ = r2 sin2 χ sin2 θ, all other components vanishing. (Use the same method as in Exer.
28.)

Solution: Using the same method as in Exer. 28, it’s found that:

e⃗r = sinχ sin θ cosϕe⃗x + sinχ sin θ sinϕe⃗y + sinχ cos θe⃗z + cosχe⃗w (131)

e⃗θ = r sinχ cos θ cosϕe⃗x + r sinχ cos θ sinϕe⃗y − r sinχ sin θe⃗z (132)

e⃗ϕ = −r sinχ sin θe⃗x + r sinχ sin θ cosϕe⃗y (133)

e⃗χ = r cosχ sin θ cosϕe⃗x + r cosχ sin θ sinϕe⃗y + r cosχ cos θe⃗z − r sinχe⃗w (134)

Dotting all of these terms with each other results in the metric:

gαβ =


1 0 0 0
0 r2 sin2 θ 0 0
0 0 r2 sin2 χ sin2 θ 0
0 0 0 r2

 (135)

which is the desired result.

7 Chapter 7: Physics in a Curved Spacetime

Exercise (7.2): To first order in ϕ, compute gαβ for Eq. (7.8).
Solution: Eq. (7.8) gives the line element for the ordinary Newtonian potential to the first order to be:

ds2 = −(1 + 2ϕ)dt2 + (1− 2ϕ)(dx2 + dy2 + dz2) (136)

so the metric can be inferred to be:

gαβ =


−(1 + 2ϕ) 0 0 0

0 (1− 2ϕ) 0 0
0 0 (1− 2ϕ) 0
0 0 0 (1− 2ϕ)

 (137)

Since this metric is diagonal, the inverse of it will just invert the components, meaning that:

gαβ =


−1

1+2ϕ 0 0 0

0 1
1−2ϕ 0 0

0 0 1
1−2ϕ 0

0 0 0 1
1−2ϕ

 (138)

Exercise (7.3): Calculate all the Christoffel symbols for the metric given by Eq. (7.8), to first order in ϕ.
Assume ϕ is a general function of t, x, y, and z.
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Solution: Using Eq. (5.75), which allows us to compute the Christoffel symbols in terms of the metric and its
derivatives, the components of the Christoffel symbols can be computed. Take Γx

xx, for example. This would be
computed by:

Γx
xx =

1

2
gtx (gtx,x + gtx,x − gxx,t) +

1

2
gxx (gxx,x + gxx,x − gxx,x)

+
1

2
gyx (gyx,x + gyx,x − gxx,y) +

1

2
gzx (gzx,x + gzx,x − gxx,z)

(139)

Which reduces nicely since the non-zero components of this metric are only found along the diagonal, meaning that
only gtt, gxx, gyy, gzz will have non-zero components. This results in:

Γx
xx =

1

2
gxx (gxx,x + gxx,x − gxx,x) =

1

2
gxx

∂gxx
∂x

=
1

2
(1− 2ϕ)

∂

∂x
(1− 2ϕ) = −(1− 2ϕ)

∂ϕ

∂x

(140)

And the other 63 components of Γγ
βµ can be computed in the same way, using the simplifications used above.

8 Chapter 8: The Einstein Field Equations

Exercise (8.1): Show that Eq. (8.2) is a solution of Eq. (8.1) by the following method. Assume the point particle
to be at the origin, r = 0, and to produce a spherically symmetric field. Then use Gauss’ law on a sphere of radius
r to conclude

dϕ

dr
=

Gm

r2

Deduce Eq. (8.2) from this. (consider the behavior at infinity.)
Solution: First considering the acceleration experienced due to the gravitational field around this point particle,

one gets:

g =
Gm

r2
(141)

When considering the application of Gauss’ law to this object, it’s clear that the direction of g will be opposite to
that of dA, meaning g⃗ · dA⃗ = −gdA. Using this in the integral form of Gauss’ law when the integrated area is the
surface area of a sphere concentric around the point at the origin:

ϕ =

∫∫
g⃗ · dA⃗ = −

∫∫
gdA = g − 4πr2 = −4πGm (142)

Since the integral form of Gauss’ law must be equal to the differential form:∫∫∫
∇ · gdV = −4πGm (143)

Since mass is just the density of some object integrated over a volume:∫∫∫
∇ · gdV = −4πG

∫∫∫
ρdV (144)

Which means by inspection that:
∇ · g = −4πGρ (145)

Given the form of the scalar gravitational potential ϕ = Gm/r and Eq. (141), it’s clear that

g = −dϕ

dr
(146)

And since ϕ is only a function of r, −dϕ/dr ≡ −∇ϕ which means we can simplify Eq. (145) to the desired form:

∇2ϕ = 4πGρ (147)

Exercise (8.5a): Show that if hαβ = ξα,β + ξβ,α, then Eq. (8.25) vanishes.

14



Solution: Starting with Eq. (8.25):

Rαβµν =
1

2
(hαν,βµ + hβµ,αν − hαµ,βν − hβν,αµ) (148)

All for components of Rαβµν must be computed in the following way to show that it vanishes:

hαν,βµ = ξα,βµν + ξν,αβµ (149)

hβµ,αν = ξβ,αµν + ξµ,αβν (150)

−hαµ,βν = −ξα,βµν − ξµ,αβν (151)

−hβν,αµ = −ξβ,α,µν − ξν,αβµ (152)

It’s apparent that when you add Eq. (115) - Eq. (118) together, you will get 0, meaning Rαβµν = 0.
Exercise (8.5b): Argue from this that Eq. (8.25) is gauge invariant.
Solution: A gauge transformation is defined as a small change in coordinates where hαβ → hαβ − ξα,β − ξβ,α.

Since we have just shown that hαβ = ξα,β + ξβ,α results in Rαβµν = 0, if we use this expression for hαβ in the gauge
transformation, we get hαβ → ξα,β+ξβ,α+ξα,β−ξβ,α, which means that the gauge transformation becomes hαβ → 0.
Using this expression for the transformed coordinates in Eq. (8.25) will obviously result in Rαβµν = 0, which means
that Rαβµν has been unchanged under this gauge transformation, meaning it is gauge invariant.

Exercise (8.6): Weak-field theory assumes gµν = ηµν + hµν with |hµν | ≪ 1. Similarly gµν must be close to ηµν ,
say gµν = ηµν + δgµν . Show from Exer. 4a that δgµν = −hµν +O(h2). Thus, ηµαηνβhαβ is not the deviation of gµν

from flatness.
Solution: Start with the assumption that:

gµν = ηµν + δhµν (153)

and
gµσ = ηµσ + δgµσ (154)

then:
gµνg

µσ = (ηµν + δhµν) (η
µσ + δgµσ) (155)

It is an identity that gαβg
βλ = δλα so, after multiplying the terms out, this expression becomes:

δσµ = ηµνη
µσ + ηµνδg

µσ + hµνη
νσ + hµνδg

νσ (156)

We can use the identity ηαβη
βλ = δλα again to get:

δσµ = δσµ + ηµνδg
µσ + hµνη

νσ + hµνδg
νσ (157)

So the δσµ terms cancel out, leaving us with:

0 = ηµνδg
µσ + hµνη

νσ + hµνδg
νσ (158)

Since we have assumed that |hµν | ≪ 1 and also expect that |δgµσ| ≪ 1, we should expect that their product, hµνδg
µσ

should be nearly zero. This assumption allows us to drop this term in the previous expression so we get:

−ηµνδg
µσ = hµνη

νσ (159)

Solving for δgµσ results in:
δgµσ = −ηνσηµνhµν (160)

These two Minkowski metrics act to swap and raise the indices on hµν so this gives us:

δgµσ = −hνσ (161)

Which is the desired result. Notice that the exercise includes a O(h2) factor that would have remained in this
expression if I had not just taken hµνδg

µσ out of the expression entirely.
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9 Chapter 9: Gravitational Radiation

Exercise (9.2): Show that the real and imaginary parts of Eq. (9.2) at a fixed spatial position {xi} oscillate
sinusoidally in time with frequency ω = k0.

Solution: Starting with Eq. (9.2):
h̄αβ = Aαβeikαxα

(162)

With the use of Euler’s formula, this becomes:

h̄αβ = Aαβ (cos(kαx
α) + i sin(kαx

α)) (163)

Isolating the α = 0 component in this expression leaves us with:

h̄αβ = Aαβ
(
cos(k0x

0) + i sin(k0x
0) + cos(kix

i) + i sin(kix
i)
)

(164)

Which shows that h̄αβ oscillates as a sinusoid in time with an angular frequency ω = k0:

h̄αβ = Aαβ
(
cos(ωt) + i sin(ωt) + cos(kix

i) + i sin(kix
i)
)

(165)

10 Chapter 10: Spherical Solutions for Stars

Exercise (10.1): Starting with ds2 = ηαβdx
αdxβ , show that the coordinate transformation r =

√
x2 + y2 + z2,

θ = cos−1(z/r), ϕ = tan−1(y/x) leads to Eq. (10.1), ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdϕ2).
Solution: To derive this line element, we must first compute the metric for a flat spacetime in spherical coordi-

nates. This metric will follow the form:

gαβ =


e⃗t · e⃗t e⃗t · e⃗r e⃗t · e⃗θ e⃗t · e⃗ϕ
e⃗r · e⃗t e⃗r · e⃗r e⃗r · e⃗θ e⃗r · e⃗ϕ
e⃗θ · e⃗t e⃗θ · e⃗r e⃗θ · e⃗θ e⃗θ · e⃗ϕ
e⃗ϕ · e⃗t e⃗ϕ · e⃗r e⃗ϕ · e⃗θ e⃗ϕ · e⃗ϕ

 (166)

Since this transformation from Cartesian to spherical coordinates does not depend on t, e⃗t will be of the form
⟨dt, 0, 0, 0⟩ and e⃗i will be of the form ⟨0, ..., ..., ...⟩, which means that e⃗t · e⃗i = 0. This turns our metric into:

gαβ =


e⃗t · e⃗t 0 0 0
0 e⃗r · e⃗r e⃗r · e⃗θ e⃗r · e⃗ϕ
0 e⃗θ · e⃗r e⃗θ · e⃗θ e⃗θ · e⃗ϕ
0 e⃗ϕ · e⃗r e⃗ϕ · e⃗θ e⃗ϕ · e⃗ϕ

 (167)

To compute e⃗r, e⃗θ, and e⃗ϕ, the transformation e⃗α′ = Λβ
α′ e⃗β will be used with x = r sin θ cosϕ, y = r sin θ sinϕ, and

z = r cos θ:

e⃗r =
∂x

∂r
e⃗x +

∂y

∂r
e⃗y +

∂z

∂r
e⃗z

=⇒ e⃗r = sin θ cosϕe⃗x + sin θ sinϕe⃗y + cos θe⃗z

(168)

e⃗θ =
∂x

∂θ
e⃗x +

∂y

∂θ
e⃗y +

∂z

∂θ
e⃗z

=⇒ e⃗θ = r cos θ cosϕe⃗x + r cos θ sinϕe⃗y − r sin θe⃗z

(169)

e⃗ϕ =
∂x

∂ϕ
e⃗x +

∂y

∂ϕ
e⃗y +

∂z

∂ϕ
e⃗z

=⇒ e⃗ϕ = −r sin θ sinϕe⃗x + r sin θ cosϕe⃗y

(170)

By direct computation, it can then be shown that e⃗θ · e⃗r = e⃗r · e⃗θ = e⃗r · e⃗ϕ = e⃗ϕ · e⃗r = e⃗θ · e⃗ϕ = e⃗ϕ · e⃗θ = 0, which
are notably all of the off-diagonal elements in gαβ . It can also then be shown by direct computation that e⃗r · e⃗r = 1,
e⃗θ · e⃗θ = r2, and e⃗ϕ · e⃗ϕ = r2 sin2 θ. This results in the metric:

gαβ =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (171)

Reading the line element ds2 off of this metric results in:

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ2

)
(172)
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11 Chapter 12: Cosmology

Exercise (12.7a): Find the coordinate transformation leading to Eq. (12.20).
Solution: To consider the Robertson-Walker metric:

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ

)
(173)

and when k = −1 requires the coordinate transformation:

dχ2 =
dr2

1 + r2
(174)

This implies that

dχ =
dr√
1 + r2

(175)

Integrating this to get χ(r) results in
χ = sinh−1(r) =⇒ r = sinh(χ) (176)

With this transformation, the Robertson-Walker metric when k = −1 becomes:

ds2 = −dt2 + a2(t)
(
dχ2 + sinh2(χ)dΩ

)
(177)
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