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Chapter 2: Special Relativity and Electromagnetism

Problem (2.3): Show explicitly the boost (2.11) indeed leaves the distance (2.8) invariant.
Solution: The distance, (2.8), is given as:

ds2 = −(cdt)2 + dx2 + dy2 + dz2 (1)

which I will write as:

(dxµ)2 =


−dt2

dx2

dy2

dz2

 (2)

where (dx0)2 = −dt2 and c = 1 for simplicity.
The boost (2.11) is given as:

Λµ′

µ =


coshϕ − sinhϕ 0 0
− sinhϕ coshϕ 0 0

0 0 1 0
0 0 0 1

 (3)

where ϕ is a parameter, ranging from −∞ to ∞, given by ϕ = tanh−1(v).
To transform this interval, it can be multiplied by Eq. (3):

(dxµ′
)2 = Λµ′

µ (dxµ)2 =


coshϕ − sinhϕ 0 0
− sinhϕ coshϕ 0 0

0 0 1 0
0 0 0 1



−dt2

dx2

dy2

dz2

 (4)

This results in the matrix:

(dxµ′
)2 =


coshϕdt2 − sinhϕdx2

− sinhϕdt2 + coshϕdx2

dy2

dz2

 (5)

Recalling that ϕ = tan−1(v), (dxµ′
)2 can be simplified down to:

(dxµ′
)2 =


γ2(dt2 − v2dx2)
γ2(dx2 − v2dt2)

dy2

dz2

 (6)

where γ = 1/
√
1− v2.

So to show that the spactime interval is invariant under the Lorentz transformation, we need to show that
−(dt′)2 + (dx′)2 = −dt2 + dx2:

−(dt′)2 + (dx′)2 = γ2dt2 − v2γ2dx2 + γ2dx2 − v2γ2dt2

= γ2
(
1− v2

)
dt2 + γ2

(
1− v2

)
dx2

= dt2 + dx2

=⇒ −(dt′)2 + (dx′)2 = dt2 + dx2

(7)
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And since (dy′)2 = dy2 and (dz′)2 = dz2, we have shown that the spacetime interval is invariant under Lorentz
transformations: (ds′)2 = ds2

Problem (2.4): Show that ϵσαβγ∂γFαβ = 0 is equivalent to half of the Maxwell equations.
Solution: With the knowledge that the Levi-Civita symbol, ϵσαβγ , is equal to one only when there is an even

permutation in the σαβγ indices, this becomes:

ϵσαβγ =


1 if σαβγ is an even permutation

0 repeated indices

−1 else

(8)

in four dimensions where 0 → t, 1 → x, 2 → y, and 3 → z. We can begin to arrive half of the Maxwell equations by
plugging values into the σ index of ϵσαβγ since this restrict the values of the other indices that do not result in zero.
Starting with σ = 0:

ϵ0αβγ∂γFαβ = 0

=⇒ ϵ0123∂3F12 + ϵ0231∂1F23 + ϵ0312∂2F31 + ϵ0321∂1F32 + ϵ0213∂3F21 + ϵ0132∂2F13 = 0

=⇒ ∂3F12 + ∂1F23 + ∂2F31 − ∂1F32 − ∂3F21 − ∂2F13 = 0 =⇒
(9)

And since Fαβ is defined as the field equation below:

Fαβ =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 (10)

Eq. (9) becomes:
2∂1B1 + 2∂2B2 + 2∂3B3 = 0

=⇒ ∂xBx + ∂yBy + ∂zBz = 0

=⇒ ∇ · B⃗ = 0

(11)

Now considering σ = 1, this results in:

ϵ1αβγ∂γF
αβ = ∂tBx + ∂yEz − ∂zEy + ∂yEz + ∂tBx − ∂zEy = 0

=⇒ 2 (∂tBx + ∂yEz − ∂zEy) =⇒ ∂tBx + ∂yEz − ∂zEy = 0
(12)

σ = 2 results in:
∂xEz − ∂zEx − ∂tBy + ∂xEz − ∂tBy − ∂zEx = 0

=⇒ −2 (∂tBy − ∂xEz + ∂zEx) = 0 =⇒ ∂tBy − ∂xEz + ∂zEx = 0
(13)

σ = 3 results in:
−∂yEx + ∂tBz + ∂xEy − ∂yEx + ∂xEy + ∂tBz = 0

=⇒ −∂yEx + ∂tBz + ∂xEy = 0
(14)

Combining the σ = 1, 2, 3 results gives us:

∂tBx + ∂yEz − ∂zEy + ∂tBy − ∂xEz + ∂zEx − ∂yEx + ∂tBz + ∂xEy = 0 (15)

Notice here that all of the ∂t terms make up the components of ∂tB⃗ and all of the ∂i terms, where i ∈ {x, y, z} make

up the components of ∇× E⃗, giving us the third Maxwell equation:

∇× E⃗ +
∂B⃗

∂t
= 0 (16)

Chapter 3: Some Elements of General Relativity

Problem (3.1):
Problem (3.2): Given the formula for the covariant derivative of a vector (3.10) V µ, assume that the covariant

derivative of a vector with its index down is given by:

∇µVν = ∂µVν + Γ̄λ
µνVλ.
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Show that for the derivative of a scalar VµV
µ to be given by just the partial derivative, one has to have that

Γ̄λ
µν = −λλ

µν . Therefore the covariant derivative of a vector with its index down is given by:

∇µVν = ∂µVν − Γλ
µνVλ.

For the derivative of a scalar VµV
µ to be given by just the partial derivative,

∇µ (VνV
ν) = ∂µ (VνV

ν) (17)

must be satisfied. Since the partial derivative operator and covariant derivative operators are linear, it must be true
that

V ν∇µVν + V ν∇µV
ν = V ν∂µVν + Vν∂µV

ν . (18)

We know the definition of ∇µV
ν so this brings the expression to:

V ν∇µVν + Vν

(
∂µV

ν + Γν
µλV

λ
)
= V ν∂µVν + Vν∂µV

ν . (19)

We can expand the ∇µVν component with our assumption of what form the covariant derivative of a covariant vector
will be so this becomes:

V ν
(
∂µVν + Γ̄λ

µνVλ

)
+ Vν

(
∂µV

ν + Γν
µλV

λ
)
= V ν∂µVν + Vν∂µV

ν . (20)

It’s clear that the partial derivative terms will cancel, leaving us with:

V ν Γ̄λ
µνVλ = −VνΓ

ν
µλV

λ. (21)

It’s crucial to notice that both sides of this expression, when summed over all relevant indices, will only be in terms
of µ. Because of this, ν and λ are dummy indices. Making the index swap so that ν → λ and λ → ν on the right
hand side of this expression results in:

V ν Γ̄λ
µνVλ = −VλΓ

λ
µνV

ν (22)

This allows us to swap the positions of the V ν and Vλ terms on the right hand side of this expression, leaving us
with:

V ν Γ̄λ
µνVλ = −V νΓλ

µνVλ (23)

The V ν and Vλ terms appear on both sides of the expression so can be cancelled to result in an expression only
comparing Γλ

µν and Γ̄λ
µν :

Γ̄λ
µν = −Γλ

µν (24)

which is the desired result.
Problem (3.3): The general formula for the covariant derivative of a tensor with k upper indices and l lower

indices is given by

∇λT
µ1...µk
ν1...νl

= ∂λT
µ1...µk
ν1...νl

+ Γµ1

λσT
σ...µk
ν1...νl

+ · · ·+ Γµ1

λσT
µ1...σ
ν1...νl

−Γσ
λν1

Tµ1...µk
σ...νl

− · · · − Γσ
λνl

Tµ1...µk
ν1...σ .

(25)

Show that the covariant derivative of the metric vanishes if the connection is the Christoffel connection.
Solution: Including only the relevant terms in the general form of the covariant derivative of any tensor when

one considers a metric gµν leaves us with:

∇λgµν = ∂λgµν − Γσ
λµgσν − Γσ

λνgµσ. (26)

The definition of the Christoffel symbols alters this expression to be of the form:

∇λgµν = ∂λgµν − 1

2
gσνg

σρ (∂λgρµ + ∂µgρλ − ∂ρgλµ)

−1

2
gµσg

σρ (∂λgνρ + ∂νgλρ − ∂ρgλν)

(27)

The metrics being multiplied by each other all have σ terms so they become Kronecker delta functions:

∇λgµν = ∂λgµν − 1

2
δρν (∂λgρµ + ∂µgρλ − ∂ρgλµ)

−1

2
δρµ (∂λgνρ + ∂νgλρ − ∂ρgλν)

(28)
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which then make the change of variables ρ → ν for the left-hand expression and µ → ρ for the right-hand expression,
leaving us with:

∇λgµν = ∂λgµν − 1

2
(∂λgνµ + ∂µgνλ − ∂ρgλµ)

−1

2
(∂λgνµ + ∂νgλµ − ∂µgλν) .

(29)

By inspection, all of the terms above will cancel with each other since we have assumed that the metric is symmetric
(gµν = gνµ) so this leaves us with the desired result:

∇λgµν = 0. (30)

This result should be expected since the metric of our manifold should not change as we parallel transport vectors
along curves on it.

Problem (3.4): Show that if the connection is symmetric and the covariant derivative of the metric vanishes,
the connection is given by the Christoffel symbols using the method in the text.

Solution: If the covariant derivative of the metric vanishes, then

∇σgµν = ∇µgσν = ∇νgσµ = 0. (31)

So we can write out the terms of these three statements with the original definition of the covariant derivative and
sum them in a way such that we’re only let with an expression for a single Christoffel symbol. Beginning with ∇σgµν :

∇σgµν = ∂σgµν − Γλ
σνgλµ − Γλ

σµgλν = 0 (32)

∇µgσν = ∂µgσν − Γλ
µνgλσ − Γλ

µσgλν = 0 (33)

∇νgσµ = ∂νgσµ − Γλ
νµgλσ − Γλ

νσgλµ = 0 (34)

Now with some trial and error along with some luck, one realizes that if Eq. (32) and Eq. (33) are subtracted
from Eq. (34) when the assumption that the Christoffel symbols are symmetric

(
Γk
ij = Γk

ji

)
, there will remain an

expression in terms of a single Christoffel symbol once the smoke clears:

−∂σgµν + Γλ
σνgλµ + Γλ

σµgλν − ∂µgσν + Γλ
µνgλσ + Γλ

µσgλν + ∂νgσµ − Γλ
νµgλσ − Γλ

νσgλµ (35)

−∂σgµν − ∂µgσν − ∂νgσµ − 2Γλ
σµgλν = 0 (36)

Γλ
σµ =

1

2
gλν (∂σgµν + ∂µgσν − ∂νgσµ) (37)

Problem (3.6): Compute ρ(t) for the dust filled FRW model with a(t) = t2/3.
Solution: Since we want an expression for ρ(t), we are looking for the T00 term in the Einstein field equations:

1

8πG

(
R00 −

1

2
g00R

)
= T00 = ρ(t) (38)

with the diagonal metric:

gµν =


−1 0 0 0
0 t2/3 0 0
0 0 t2/3 0
0 0 0 t2/3

 . (39)

I will begin by solving the Ricci tensor R00 using its definition in terms of the Christoffel symbols:

R00 = ∂kΓ
k
00 − ∂0Γ

k
0k + Γk

00Γ
m
km − Γk

0mΓm
0k. (40)

Now I will take a look at the individual Christoffel symbols:

Γk
00 =

1

2
gkρ

(
�

��∂0gρ0 +�
��∂0gρ0 −�

��∂ρg00
)
= 0 (41)

Since Γk
00 = 0, this reduces the Ricci tensor down to:

R00 = −∂0Γ
k
0k +−Γk

0mΓm
0k. (42)
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Continuing on:

−Γk
0m = −1

2
gkρ (∂0gρm +���∂mgρ0 −���∂ρgom) = −1

2
grρ∂0gρm (43)

Since we have a diagonal metric, the following must be true:

Γk
0k = −Γk

0m = Γm
0k (44)

Again, because we have a diagonal metric, the only non-zero components of R00 will be when k = ρ = m = r in the
Christoffel symbols (note: if I really didn’t get the correct answer, this would be my incorrect assumption made).
This results in:

R00 = −∂0Γ
k
0k − Γk

0mΓm
0k

=⇒ R00 = −1

2
∂0
(
gkρ∂0gρk

)
− 1

4
gkρgmρ∂0 (gρm + gρk)

=⇒ R00 = −1

2
∂0
(
gkk∂0gkk

)
− 1

4
gkkgkk∂0 (gkk + gkk)

(45)

Now turning to the − 1
2gµνR term of the Einstein field equations and using the same assumption that the indices

must be the same since this is a diagonal metric:

R = gµµRµµ. (46)

Writing out the Ricci tensor again:

Rµµ =�
��∂0Γ

0
µ0 −�

��∂0Γ
0
µ0 + Γ0

µ0Γ
m
0m − Γ0

µmΓm
00 (47)

Inspecting the Christoffel symbols and occasionally adopting the notation that ∂0gµν ≡ gµν,0:

Γ0
µ0 =

1

2
gα0 (gαµ,0 +���gα0,µ −���gµ0,α) = −1

2
gαµ,0 (48)

Γm
0m =

1

2
gαm (���gα0,m + gαm,0 −���g0m,α) =

1

2
gαm∂0gαm (49)

Γm
00 =

1

2
gαm (���gα0,0 +���gα0,0 −���g00,α) = 0 (50)

These three expression simplify the Rµµ Ricci tensor into:

Rµµ = Γ0
µ0Γ

m
0m =

(
−1

2
∂0gαµ

)(
1

2
gαm∂0gαm

)
(51)

Again making the assumption that all of the indices must be the same in order to avoid the zero components of the
metric:

Rµµ = −1

4
gαm∂0 (gαµgαm)

=⇒ Rµµ = −1

4
gµµ∂0 (gµµgµµ)

(52)

Combining all of this into the Einstein field equation:

1

8πG

(
R00 −

1

2
g00R

)
= ρ(t)

=⇒ ρ(t) =
1

8πG

(
R00 +

1

2
R

)
=⇒ ρ(t) =

1

8πG

(
−1

2
∂0 (g

µµ∂0gµµ)−
1

2
gµµgµµ∂0 (gµµ) +

1

2
gµµ

(
gµµ

1

4
gµµ∂0 (gµµgµµ)

))
=⇒ ρ(t) =

1

8πG

(
−1

2
∂0 (g

µµ∂0gµµ)−
1

2
gµµgµµ∂0 (gµµ) +

1

8
gµµ∂0 (gµµgµµ)

)
(53)

where gµµ = −1 + 3t2/3 and gµµ = −1 + 3t3/2
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Chapter 4: Hamiltonian Mechanics including Constraints and Fields

Problem (4.1): Show that the Poisson brackets satisfy the Jacobi identity, that is, if f, g, h are three functions of
phase space, then,

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

Use it to show that if one has two constants of motion, one can generate a (potentially) new constant of motion by
considering the Poisson bracket.

Solution: I will carry this out with a straight-forward caveman proof:

{{f, g}, h} =

N∑
i=1

∂h

∂pi

∂

∂qi

(
∂f

∂qi

∂g

∂pi

)
− ∂h

∂pi

∂

∂qi

(
∂f

∂pi

∂g

∂qi

)
− ∂h

∂qi

∂

∂pi

(
∂f

∂qi

∂g

∂pi

)
+

∂h

∂qi

∂

∂pi

(
∂f

∂pi

∂g

∂qi

) (54)

{{g, h}, f} =

N∑
i=1

∂f

∂pi

∂

∂qi

(
∂g

∂qi

∂h

∂pi

)
− ∂f

∂pi

∂

∂qi

(
∂g

∂pi

∂h

∂qi

)
− ∂f

∂qi

∂

∂pi

(
∂g

∂qi

∂h

∂pi

)
+

∂f

∂qi

∂

∂pi

(
∂g

∂pi

∂h

∂qi

) (55)

{{h, f}, g} =

N∑
i=1

∂g

∂pi

∂

∂qi

(
∂h

∂qi

∂f

∂pi

)
− ∂g

∂pi

∂

∂qi

(
∂h

∂qi

∂f

∂pi

)
− ∂g

∂qi

∂

∂pi

(
∂h

∂qi

∂f

∂pi

)
+

∂g

∂qi

∂

∂pi

(
∂h

∂qi

∂f

∂pi

) (56)

Expanding these terms out:

{{f, g}, h} =

N∑
i=1

∂h

∂pi

∂g

∂pi

∂2f

∂2qi
+

∂h

∂pi

∂f

∂qi

∂2g

∂qi∂pi
− ∂h

∂pi

∂g

∂qi

∂2f

∂qi∂pi
− ∂h

∂i

∂f

∂pi

∂2g

∂2qi

− ∂h

∂qi

∂g

∂pi

∂2f

∂piqi
− ∂h

∂qi

∂f

∂qi

∂2g

∂2pi
+

∂h

∂qi

∂g

∂qi

∂2f

∂2pi
+

∂h

∂qi

∂f

∂pi

∂2g

∂pi∂qi

(57)

{{g, h}, f} =

N∑
i=1

∂f

∂pi

∂h

∂pi

∂2g

∂2qi
+

∂f

∂pi

∂g

∂qi

∂2h

∂qi∂pi
− ∂f

∂pi

∂h

∂qi

∂2g

∂qi∂pi
− ∂f

∂pi

∂g

∂pi

∂2h

∂2qi

− ∂f

∂qi

∂h

∂pi

∂2g

∂pi∂qi
− ∂f

∂qi

∂g

∂qi

∂2h

∂2pi
+

∂f

∂qi

∂h

∂qi

∂2g

∂2pi
+

∂f

∂qi

∂g

∂pi

∂2h

∂pi∂qi

(58)

{{h, f}, g} =

N∑
i=0

∂g

∂pi

∂f

∂pi

∂2h

∂2qi
+

∂g

∂pi

∂h

∂qi

∂2f

∂qi∂pi
− ∂g

∂pi

∂f

∂pi

∂2h

∂2qi
− ∂g

∂pi

∂h

∂qi

∂2f

∂qi∂pi

− ∂g

∂qi

∂f

∂pi

∂2h

∂pi∂qi
− ∂g

∂qi

∂h

∂qi

∂2f

∂2qi
+

∂g

∂qi

∂f

∂pi

∂2h

∂pi∂qi
+

∂g

∂qi

∂h

∂qi

∂2f

∂2pi

(59)

And, by inspection, all of these terms thankfully cancel out with each other when added together, resulting in the
statement:

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0. (60)

Problem 4.4: The Lagrangian for a relativistic particle is given by L = −m
√
uµuµ where uµ = dxµ/dτ is the

four-velocity. Notice that the action is just given by the integral of the proper time. Work out the Lagrange equations
of motion and show that the Hamiltonian vanishes. Why should have one expected the Hamiltonian to vanish?

Solution: Starting from the Euler-Lagrange equation

∂L

∂xµ
− d

dt

(
∂L

∂
(
dxµ

dτ

)) = 0, (61)

we first find that
∂L

∂xµ
= 0 (62)
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since L does not depend on xµ. We then compute

− d

dt

∂

∂
(
dxµ

dτ

) (−m
√

uµuµ

)
≡ d

dt

∂

∂
(
dxµ

dτ

) (−m

√
ηµν

dxµ

dτ

dxν

dτ

)

=
d

dt

m

2

(
ηµν

dxµ

dτ

dxν

dτ

)−1/2

2ηµν
dxν

dτ
≡ d

dt

(
muµ√
uµuµ

)
=

d

dt
(muµ) = 0.

(63)

Which is just the relativistic form of Newton’s second law. This tells us that pµ = muµ. We can then compute the
Hamiltonian for the system using the Legendre transformation:

H = pµu
µ − L = muµu

µ −m
√
uµuµ ≡ m−m = 0. (64)

This should have been expected because the Hamiltonian of a free particle just corresponds to its rest mass energy
in its own frame.

Problem 4.5: The action for a scalar field is given by

S = −1

2

∫
d4x

(
∂µϕ∂

µϕ+m2ϕ2
)
.

Work out Hamilton’s equations of motion for it.
Solution: When we define

πµ =
∂L

∂(∂µϕ)
, (65)

Hamilton’s equations of motion for fields become:

q̇i =
∂H
∂pi

=⇒ ∂µϕ =
∂H
∂πµ

(66)

ṗi = −∂H
∂qi

=⇒ ∂µϕ
µ = −∂H

∂ϕ
. (67)

Since we are given an action, which is always written in the form

S =

∫
d4xL(ϕ, ∂µϕ), (68)

we can extract L(ϕ, ∂µϕ), take the Legendre transformation of it to find H, and then find the equations of motion
above. First, since

L(ϕ, ∂µϕ) = ∂µ∂
µϕ+m2ϕ2, (69)

we use this to compute
πµ = ∂µϕ (70)

then we have
H = πµ∂µϕ− L = ∂µϕ∂µϕ− ∂µ∂

µϕ+m2ϕ2 = m2ϕ2. (71)

With this, we find Hamilton’s equations of motion:

∂H
∂πµ

= 0 (72)

−∂H
∂ϕ

= −2m2ϕ. (73)
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