
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import math
import statistics

df40 = pd.read_csv("IC Data/IC40.csv")
df59 = pd.read_csv("IC Data/IC59.csv")
df79 = pd.read_csv("IC Data/IC79.csv")
df86a = pd.read_csv("IC Data/IC86a.csv")
df86b = pd.read_csv("IC Data/IC86b.csv")
df86c = pd.read_csv("IC Data/IC86c.csv")

Original question:
In 2017, a high-energy neutrino was observed by the IceCube observatory whose inferred sky location matched that of a blazar event identified by the Fermi gamma ray telescope at the
same time. The IceCube collaboration later confirmed that the neutrino they had observed was from the blazar, which was the first neutrino to have been identified by an astrophysical
source.

With the data we're given, can we want to try identifying the neutrino that came from a blazar. We are provided with all of data collected in IceCube's history near the sky location
(https://icecube.wisc.edu/data-releases/2018/07/icecube-data-from-2008-to-2017-related-to-analysis-of-txs-0506056/) that this event happened in which spans from 2008 to 2017. We know
that the event occured some time in 2017 but we will act as if we didn't know this and will try independently arriving at this time with the data given.

df40["name"] = "IC40"
df59["name"] = "IC59"
df79["name"] = "IC79"
df86a["name"] = "IC86a"
df86b["name"] = "IC86b"
df86c["name"] = "IC86c"

The original data gives us the log base ten of the muon energy detected from each event (the muon energy is related to the neutrino energy by some particle physics process)

We first combine all the data into a single frame and plot all of the event energies by time as a scatterplot to see if we can identify the event

frames = [df40, df59, df79, df86a, df86b, df86c]
dftot = pd.concat(frames)

dftot.reset_index(drop=True, inplace=True)

dfs = [df40, df59, df79, df86a, df86b, df86c, dftot]
for df in dfs:
 df["time"] = (df["MJD"] - 51543)/365 + 2000

plt.scatter(dftot["time"], dftot["log10(Ereco)"])
plt.xlabel("Time (Years)")
plt.ylabel("log10(Ereco)")

Text(0, 0.5, 'log10(Ereco)')

It's not exactly clear when the event happened from this data (I guess we're assuming that this event will have noticably more energy than the others at this point...) Maybe removing the
log scale will change this?

dfs = [df40, df59, df79, df86a, df86b, df86c, dftot]
for df in dfs:
 df["energy"] = math.e**df["log10(Ereco)"]

dfs = [df40, df59, df79, df86a, df86b, df86c]
labels = ["40", "59", "79", "86a", "86b", "86c"]

start_times = {}
end_times = {}

for df, label in zip(dfs, labels):
 start_times[label] = df.iloc[0]["time"]
 end_times[label] = df.iloc[-1]["time"]

start_times["40"]

2008.2858957808219

plt.scatter(dftot["time"], dftot["energy"])
plt.xlabel("Time (Years)")
plt.ylabel("Muon Energy")
plt.xlim(start_times["40"], end_times["86c"])
#plt.savefig("Figures/all_data_no_labels.png",dpi=300)

(2008.2858957808219, 2017.846920109589)

We separate the full data into each "observing run" to look for any hints as to where this event could have happened

plt.scatter(dftot["time"], dftot["energy"])
plt.xlabel("Time (Years)")
plt.ylabel("Muon Energy")

plt.xlim(start_times["40"], end_times["86c"])

labels = ["40", "59", "79", "86a", "86b", "86c"]
for label in labels:
 plt.axvline(x = end_times[label], color = "red")

 #plt.gca().add_patch(patches.FancyArrowPatch((start_times[label], 200), (end_times[label], 200), arrowstyle='<->', mutation_scale=10))
 plt.text((start_times[label] + end_times[label]) / 2, 200, 'IC'+label, horizontalalignment='center')
#plt.savefig("Figures/all_data_with_labels.png",dpi=300)

As suggested by Dr. Anderson: maybe we attempt to bin the data over time and plot the energy of these bins. Maybe we'll see a spike in this plot around the time of the blazar

interval = 1+3.322*np.log(len(dftot))
print(interval)

25 bins for data

24.7073972189368

t = np.linspace(min(dftot["MJD"]), max(dftot["MJD"]), num=25)
dftot["binned"] = np.digitize(dftot["MJD"], t)

averaged = dftot[["binned","log10(Ereco)"]].groupby("binned", as_index=False).mean()

plt.plot(averaged["binned"], averaged["log10(Ereco)"])
plt.xlabel("Binned timseries data")
plt.ylabel("Neutrino Energy")

Text(0, 0.5, 'Neutrino Energy')

Maybe trying the regular energy again will work?

t = np.linspace(min(dftot["MJD"]), max(dftot["MJD"]), num=25)
dftot["binned"] = np.digitize(dftot["MJD"], t)

averaged = dftot[["binned","energy"]].groupby("binned", as_index=False).mean()

plt.plot(averaged["binned"], averaged["energy"])
plt.xlabel("Binned timseries data")
plt.ylabel("Neutrino Energy")

Text(0, 0.5, 'Neutrino Energy')

This isn't working... maybe if we try making these plots for each observing run, it will be noticable?

Using Sturges' rule to find the optimal bin size for each df
I'm rounding each of the bin sizes down to the closest integer

dfs = [df40, df59, df79, df86a, df86b, df86c]
labels = ["40", "59", "79", "86a", "86b", "86c"]

bin_size = {}
for df, label in zip(dfs, labels):
 bin_size[label] = math.floor(1+3.322*np.log(len(df)))

bin_size

{'40': 12, '59': 16, '79': 16, '86a': 16, '86b': 20, '86c': 22}

max_y_value = max(dftot["energy"])
min_y_value = min(dftot["energy"])

fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(18, 10))

dfs_row1 = [df40, df59, df79]
labels_row1 = ["40", "59", "79"]
bins_row1 = [12,16,16]
for j, df, bins, label in zip(range(3), dfs_row1, bins_row1, labels_row1):
 t = np.linspace(min(df["MJD"]), max(df["MJD"]), num=bins)
 df["binned"] = np.digitize(df["MJD"], t)
 averaged = df[["binned","energy"]].groupby("binned", as_index=False).mean()
 ax[0,j].scatter(averaged["binned"], averaged["energy"])
 ax[0,j].set_xlabel("Binned Timeseries")
 ax[0,j].set_ylabel("Binned Energy")
 ax[0,j].set_title("IC"+label)

bins_row2 = [16,20,22]
dfs_row2 = [df86a, df86b, df86c]
labels_row2 = ["86a", "86b", "86c"]
for j, df, bins, label in zip(range(3), dfs_row2, bins_row2, labels_row2):
 t = np.linspace(min(df["MJD"]), max(df["MJD"]), num=bins)
 df["binned"] = np.digitize(df["MJD"], t)
 averaged = df[["binned","energy"]].groupby("binned", as_index=False).mean()
 ax[1,j].scatter(averaged["binned"], averaged["energy"])
 ax[1,j].set_xlabel("Binned Timeseries")
 ax[1,j].set_ylabel("Binned Energy")
 ax[1,j].set_title("IC"+label)

for i in range(2):
 for j in range(3):
 ax[i, j].set_ylim(min_y_value, max_y_value)
plt.savefig("binning_energy.png", dpi = 300)

Again, maybe the log of the energy will make this more apparent

max_y_value = max(dftot["log10(Ereco)"])
min_y_value = min(dftot["log10(Ereco)"])

fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(18, 10))

dfs_row1 = [df40, df59, df79]
labels_row1 = ["40", "59", "79"]
bins_row1 = [12,16,16]
for j, df, bins, label in zip(range(3), dfs_row1, bins_row1, labels_row1):
 t = np.linspace(min(df["MJD"]), max(df["MJD"]), num=bins)
 df["binned"] = np.digitize(df["MJD"], t)
 averaged = df[["binned","log10(Ereco)"]].groupby("binned", as_index=False).mean()
 ax[0,j].scatter(averaged["log10(Ereco)"], averaged["log10(Ereco)"])
 ax[0,j].set_xlabel("Binned Timeseries")
 ax[0,j].set_ylabel("Binned Log(Energy)")
 ax[0,j].set_title("IC"+label)

bins_row2 = [16,20,22]
dfs_row2 = [df86a, df86b, df86c]
labels_row2 = ["86a", "86b", "86c"]
for j, df, bins, label in zip(range(3), dfs_row2, bins_row2, labels_row2):
 t = np.linspace(min(df["MJD"]), max(df["MJD"]), num=bins)
 df["binned"] = np.digitize(df["MJD"], t)
 averaged = df[["binned","log10(Ereco)"]].groupby("binned", as_index=False).mean()
 ax[1,j].scatter(averaged["binned"], averaged["log10(Ereco)"])
 ax[1,j].set_xlabel("Binned Timeseries")
 ax[1,j].set_ylabel("Binned Log(Energy)")
 ax[1,j].set_title("IC"+label)

for i in range(2):
 for j in range(3):
 ax[i, j].set_ylim(min_y_value, max_y_value)
plt.savefig("binning_Log(energy).png", dpi = 300)

fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(18, 10))

dfs_row1 = [df40, df59, df79]
labels_row1 = ["40", "59", "79"]
bins_row1 = [12,16,16]
for j, df, bins, label in zip(range(3), dfs_row1, bins_row1, labels_row1):
 t = np.linspace(min(df["MJD"]), max(df["MJD"]), num=bins)
 df["binned"] = np.digitize(df["MJD"], t)
 averaged = df[["binned","log10(Ereco)"]].groupby("binned", as_index=False).mean()
 ax[0,j].hist(averaged["log10(Ereco)"], bins = 25)
 ax[0,j].set_xlabel("Binned Log(Energy)")
 ax[0,j].set_title("IC"+label)

bins_row2 = [16,20,22]
dfs_row2 = [df86a, df86b, df86c]
labels_row2 = ["86a", "86b", "86c"]
for j, df, bins, label in zip(range(3), dfs_row2, bins_row2, labels_row2):
 t = np.linspace(min(df["MJD"]), max(df["MJD"]), num=bins)
 df["binned"] = np.digitize(df["MJD"], t)
 averaged = df[["binned","log10(Ereco)"]].groupby("binned", as_index=False).mean()
 ax[1,j].hist(averaged["log10(Ereco)"], bins = 25)
 ax[1,j].set_xlabel("Binned Log(Energy)")
 ax[1,j].set_title("IC"+label)

for i in range(2):
 for j in range(3):
 ax[i, j].set_ylim(0, 4)

... Well this is getting nowhere. This method isn't working because it assumes that there will be multiple neutrinos detected from a single event when this is not the case. We're lucky if we
observe a single neutrino from an event like this so we can bin energies like this and expect to notice a large spike during the time of the event

What if we instead just try plotting the data by sky location and energy? Maybe something will be there

x = dftot["Ra_deg"]
y = dftot["Dec_deg"]
z = dftot["energy"]

plt.scatter(x, y, c=z, cmap=plt.cm.get_cmap('viridis'))

plt.colorbar(label='Energy')
plt.grid(alpha=0.3)
plt.xlabel('Ra_deg')
plt.ylabel('Dec_deg')
#plt.savefig("Figures/skymap_all.png",dpi=300)

/var/folders/jp/q2d924_j50z44bjzywq203800000gn/T/ipykernel_67931/5551765.py:6: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplo
tlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
 plt.scatter(x, y, c=z, cmap=plt.cm.get_cmap('viridis'))

Text(0, 0.5, 'Dec_deg')

x = dftot["Ra_deg"]
y = dftot["Dec_deg"]
z = dftot["log10(Ereco)"]

plt.scatter(x, y, c=z, cmap=plt.cm.get_cmap('viridis'))

plt.colorbar(label='log10(Ereco)')
plt.grid(alpha=0.3)
plt.xlabel('Ra_deg')
plt.ylabel('Dec_deg')
#plt.savefig("Figures/skymap_all.png",dpi=300)

/var/folders/jp/q2d924_j50z44bjzywq203800000gn/T/ipykernel_67931/3010339757.py:6: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Mat
plotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
 plt.scatter(x, y, c=z, cmap=plt.cm.get_cmap('viridis'))

Text(0, 0.5, 'Dec_deg')

Again nothing useful. None of these methods have been sucessful in identifying the event.

Revised Question:
Alright, the original goal of trying to identify the blazar neutrino a priori just isn't going to work.

What we will try to instead do is assume that we know when and where the blazar event happened. We will search the literature for the exact sky location and time this event happened at
and artifically identify it in our data.

It's useful to think about the astrophysical object we're dealing with. Reminder that a blazar is a galaxy with a very active supermasssive black hole at its center which is spewing out jets
with extremely high radition energy. A blazar is distinguished from a quasar by its orientation towards Earth. A blazar is a quasar whose relativistic jet is pointed directly towards Earth.

Given this, it would be absolutely crazy to expect that this single neutrino identified to have come from this blazar is unique. I can't think of how this blazar would suddenly turn off its beam
directed towards us or shift its orientation away from us at such a rapid pace. Because of this, it's reasonable to expect that some number of neutrinos near this sky location previously
detected by IceCube ALSO came from this blazar.

Testing this hypothesis is the aim of https://www.science.org/doi/10.1126/science.aat2890 and it is our revised question:

Given that we know a neutrino has been identified to have come from a blazar, can we find evidence with the data that's given to us that previous neutrino
detections also came from this blazar?

We first identify the blazar neutrino in the data:

event = df86c.iloc[566]

plt.scatter(dftot["time"], dftot["energy"])
plt.scatter(event["time"], event["energy"], c="red", label="Blazar event")

plt.xlabel("Time (Years)")
plt.ylabel("Muon Energy")
plt.xlim(start_times["40"], end_times["86c"])
plt.legend()
#plt.savefig("Figures/all_data_no_labels.png",dpi=300)

<matplotlib.legend.Legend at 0x11b0eb550>

x = dftot["Ra_deg"]
y = dftot["Dec_deg"]
z = dftot["energy"]

plt.scatter(x, y, c=z, cmap=plt.cm.get_cmap('viridis'))
plt.scatter(event["Ra_deg"], event["Dec_deg"], c="red", label="Blazar event")

plt.colorbar(label='Energy')
plt.grid(alpha=0.3)
plt.xlabel('Ra_deg')
plt.ylabel('Dec_deg')
plt.legend()
#plt.savefig("Figures/skymap_all_with_blazar.png",dpi=300)

/var/folders/jp/q2d924_j50z44bjzywq203800000gn/T/ipykernel_67931/2256601996.py:6: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Mat
plotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
 plt.scatter(x, y, c=z, cmap=plt.cm.get_cmap('viridis'))

<matplotlib.legend.Legend at 0x11b2d7010>

Right in the middle the whole time...

Here's a really pretty plot that adds nothing to the goal of answering our revised question but shows the number of neutrinos detected near the sky location of the blazar over each
observing run:

from matplotlib.cm import ScalarMappable

fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(18, 10))

x = dftot["Ra_deg"]
y = dftot["Dec_deg"]
z = dftot["energy"]

dfs_row1 = [df40, df59, df79]
labels_row1 = ["40", "59", "79"]

for j, df, label in zip(range(3), dfs_row1, labels_row1):
 sc = ax[0, j].scatter(x, y, c=z, cmap='viridis')
 ax[0, j].scatter(df["Ra_deg"], df["Dec_deg"], color='red', label="IC" + label)
 ax[0, j].set_xlabel('Right Ascension')
 ax[0, j].set_ylabel('Declination')
 ax[0, j].grid(alpha=0.3)
 ax[0, j].legend()

dfs_row2 = [df86a, df86b, df86c]
labels_row2 = ["86a", "86b", "86c"]
for j, df, label in zip(range(3), dfs_row2, labels_row2):
 sc = ax[1, j].scatter(x, y, c=z, cmap='viridis')
 ax[1, j].scatter(df["Ra_deg"], df["Dec_deg"], color='red', label="IC" + label)
 ax[1, j].set_xlabel('Right Ascension')
 ax[1, j].set_ylabel('Declination')
 ax[1, j].grid(alpha=0.3)
 ax[1, j].legend()

plt.tight_layout()
#plt.show()
#plt.savefig("Figures/all_sky_maps.png",dpi=300)

Before moving on, it's important to consider the factors that would contribute to previous neutrinos possibly having come from the same blazar event:

The neutrino is identified to be close in sky location to the original event
The neutrinos have energies similar to that of the original event
There is a high density of events in time

To consider how we could use distances to the original event to determine if previous neutrinos also originated from the same location, we recognize that we're given a declination and right
ascension angles for each event and so consult the physics stack exchange for how to infer a physical two-dimensional distance to the event from these angles for each event. From
https://physics.stackexchange.com/questions/224950/how-can-i-convert-right-ascension-and-declination-to-distances, we are told to use the formula:

Where is the declination angle in radians and is the right ascension angle in radians

Then use

where is the physical distance to the source (the blazar)

The distance to TXS is given as 1750 Mpc by https://iopscience.iop.org/article/10.3847/1538-4357/aad59a/pdf
TXS_distance = 1750
TXS_RA_deg = 77.39
TXS_dec_deg = 5.64

TXS_RA_rad = np.radians(TXS_RA_deg)
TXS_dec_rad = np.radians(TXS_dec_deg)

The RA and dec values of TXS are also given in https://iopscience.iop.org/article/10.3847/1538-4357/aad59a/pdf... they cite another paper, though. Use th

dfs = [df40, df59, df79, df86a, df86b, df86c, dftot]
for df in dfs:
 df["RA (rad)"] = np.radians(df["Ra_deg"])
 df["Dec (rad)"] = np.radians(df["Dec_deg"])

def calculate_sep(row):
 theta = np.arccos(np.sin(TXS_dec_rad)*np.sin(row["Dec (rad)"]) +
 np.cos(TXS_dec_rad)*np.cos(row["Dec (rad)"]) *
 np.cos(TXS_RA_rad - row["RA (rad)"]))
 return TXS_distance * theta

dfs = [df40, df59, df79, df86a, df86b, df86c, dftot]

for df in dfs:
 df["sep"] = df.apply(calculate_sep, axis=1)

max_y_value = max(dftot["sep"])
min_y_value = min(dftot["sep"])
print(max_y_value)
print(min_y_value)

Printing the min value just confirms that what we're doing is reasonable; the event should have no separation distance from itself

93.40665737856547
0.0

fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(18, 10))

dfs_row1 = [df40, df59, df79]
labels_row1 = ["40", "59", "79"]
for j, df, bins, label in zip(range(3), dfs_row1, bins_row1, labels_row1):
 ax[0,j].scatter(df["time"], df["sep"], c=df["energy"], cmap='viridis')
 ax[0,j].set_xlabel("Time (Years)")
 ax[0,j].set_ylabel("Separation Distance")
 ax[0, j].set_title("IC" + label)

dfs_row2 = [df86a, df86b, df86c]
labels_row2 = ["86a", "86b", "86c"]
for j, df, bins, label in zip(range(3), dfs_row2, bins_row2, labels_row2):
 ax[1,j].scatter(df["time"], df["sep"], c=df["energy"], cmap='viridis')
 ax[1,j].set_xlabel("Time (Years)")
 ax[1,j].set_ylabel("Separation Distance (Mpc)")
 ax[1, j].set_title("IC" + label)

for i in range(2):
 for j in range(3):
 ax[i, j].set_ylim(min_y_value, max_y_value)

#plt.savefig("Figures/sep_dis_all.png",dpi=300)

I think these plots are the most informative of this entire document. Looking at IC86b, it's clear that some of these events are happening near the sky location of the blazar, have high
energies like the original event, and are pretty dense.

Here's where the fraud data science starts. I don't have a good idea for how to define the "density" of regions in these plots (some value that would take into account the physical proximity
of the points on each plot, their energies, and the separation distance values). Because there's clearly something going on in the I86b plot, I'll just look at that one now. It's important to
note that if we had some good way to define a density as explained above, then this next step could probably be made more reasonable and computational, rather than being done by eye.

plt.scatter(df86b["time"], df86b["sep"], c=df86b["energy"], cmap='viridis')
plt.xlabel("Time (Years)")
plt.ylabel("Separation Distance (Mpc)")
plt.title("IC86b")

Text(0.5, 1.0, 'IC86b')

I'm now going to guess at an interval of time over which this data is telling me that IceCube has identified neutrinos from the blazar. Again, this should be done computationally at some
point.

brightest = df86b.iloc[274]
left = brightest["MJD"]-70
right = brightest["MJD"]+120
print(left)
print(right)

so we therefore expect our "Gaussian" (modelling off of what is given in the paper) to peak around the midpoint of this:
midpoint = 120-70
print(brightest["MJD"]+midpoint)

56922.15859
57112.15859
57042.15859

plt.scatter(df86b["MJD"], df86b["sep"], c=df86b["energy"], cmap='viridis')
plt.axvline(x = left, color = "red")
plt.axvline(x = right, color = "red")

plt.xlabel("MJD")
plt.ylabel("Separation Distance (Mpc)")
plt.title("IC86b")
#plt.savefig("Figures/guess.png",dpi=300)

Text(0.5, 1.0, 'IC86b')

Use http://www.csgnetwork.com/julianmodifdateconv.html to convert the MJD times we have into regular Gregorian calendar dates we live with.

From this, we get around the same time as the paper! (from figure 1 of https://www.science.org/doi/10.1126/science.aat2890)... sorry; I can't figure out how to embed images in a Juypter
cell that don't depend on my own directory.

Discussion and Conlusion
In this cell, we have first showed that the original goal of trying to identify the blazar neutrino in the given data a priori is not possible given the information we have. It must hve been
necessary for IceCube to hear of the concident gammar ray detection made by Fermi telescope in the same sky location and at the same time to confirm that the nuetrino they had
detected was also from this source.

Because of this, we changed the project's question and instead looked at trying to determine if there is evidence for previously-detected neutrinos having come from the same blazar
without IceCube suspecting it. This is the goal of this: https://www.science.org/doi/10.1126/science.aat2890 paper. The paper uses some advanced statistical tests that require theoretical
models that we may be able to hunt down in the literature but would not be worth doing for all of the effort that would be required to find these models, understand them, and apply them to
the data we have. Instead, we make use of some very basic (and sketchy) data science to approach this question. We find similar results to the original paper with our method.

We would very much like input on how we can make our identification of regions in the plots above having high liklihood of identifying neutrinos also having come from the blazar more
statistical/quantifiable rather than carrying this out by eye and guesstimation. Maybe there are other ways to approach this question with the data we have that we did not consider as well?

A more quantitative way of identifying repeats
I'm going to do this by splitting the data into bins of length 5. In these bins, I will compute a metric that will allow me to more quantitatively determine if a repeat emission from the blazar
has been observed. I will use a metric that sums the distance of all events in each bin to the original blazar event multiplied by their individual energies and divides this all by the total
energy in the bin. This metric will look like:

dftot

MJD Ra_deg Dec_deg Unc_deg log10(Ereco) name time energy binned RA (rad) Dec (rad) sep

0 54567.35196 79.39 7.64 0.48 3.19 IC40 2008.285896 24.288427 1 1.385617 0.133343 86.097852

1 54581.57285 76.16 6.91 0.79 3.69 IC40 2008.324857 40.044847 1 1.329243 0.120602 53.843377

2 54595.90500 80.22 5.93 1.13 3.32 IC40 2008.364123 27.660351 1 1.400103 0.103498 86.451986

3 54599.51203 78.85 5.09 0.51 3.50 IC40 2008.374006 33.115452 1 1.376192 0.088837 47.469450

4 54635.22559 79.02 3.88 0.46 4.63 IC40 2008.471851 102.514064 1 1.379159 0.067719 73.150898

...

1252 58052.06508 75.73 5.18 0.83 3.06 IC86c 2017.833055 21.327557 24 1.321738 0.090408 52.394724

1253 58053.63042 75.04 4.01 0.38 2.86 IC86c 2017.837344 17.461527 24 1.309695 0.069988 87.141727

1254 58055.13148 78.64 7.87 0.33 3.08 IC86c 2017.841456 21.758402 24 1.372527 0.137357 77.951638

1255 58055.41950 79.38 5.89 0.90 2.79 IC86c 2017.842245 16.281020 24 1.385442 0.102800 60.953765

1256 58057.12584 77.64 5.23 0.93 2.85 IC86c 2017.846920 17.287782 25 1.355074 0.091281 14.649277

1257 rows × 12 columns

Using the +1 so that the counting starts from rather than 0

index_values = np.arange(len(dftot)) // 5 + 1

dftot['index'] = index_values

dftot

MJD Ra_deg Dec_deg Unc_deg log10(Ereco) name time energy binned RA (rad) Dec (rad) sep index

0 54567.35196 79.39 7.64 0.48 3.19 IC40 2008.285896 24.288427 1 1.385617 0.133343 86.097852 1

1 54581.57285 76.16 6.91 0.79 3.69 IC40 2008.324857 40.044847 1 1.329243 0.120602 53.843377 1

2 54595.90500 80.22 5.93 1.13 3.32 IC40 2008.364123 27.660351 1 1.400103 0.103498 86.451986 1

3 54599.51203 78.85 5.09 0.51 3.50 IC40 2008.374006 33.115452 1 1.376192 0.088837 47.469450 1

4 54635.22559 79.02 3.88 0.46 4.63 IC40 2008.471851 102.514064 1 1.379159 0.067719 73.150898 1

...

1252 58052.06508 75.73 5.18 0.83 3.06 IC86c 2017.833055 21.327557 24 1.321738 0.090408 52.394724 251

1253 58053.63042 75.04 4.01 0.38 2.86 IC86c 2017.837344 17.461527 24 1.309695 0.069988 87.141727 251

1254 58055.13148 78.64 7.87 0.33 3.08 IC86c 2017.841456 21.758402 24 1.372527 0.137357 77.951638 251

1255 58055.41950 79.38 5.89 0.90 2.79 IC86c 2017.842245 16.281020 24 1.385442 0.102800 60.953765 252

1256 58057.12584 77.64 5.23 0.93 2.85 IC86c 2017.846920 17.287782 25 1.355074 0.091281 14.649277 252

1257 rows × 13 columns

binned_data = []

for i in range(126):
 i +=1
 data = dftot[dftot["index"] == i]
 tot_energy = data["energy"].sum()
 dis_metric = (data["energy"] * data["sep"]).sum()
 metric = dis_metric/tot_energy
 mean_time = data["time"].mean()

 binned_data.append({"bin_num": i, "tot_energy": tot_energy,
 "dis_metric": dis_metric, "mean_time": mean_time, "metric": metric})
binned_data_df = pd.DataFrame(binned_data)

binned_data_df

bin_num tot_energy dis_metric mean_time metric

0 1 227.623141 15709.591655 2008.364147 69.015793

1 2 429.369943 20999.347900 2008.578498 48.907354

2 3 203.605087 15305.712595 2008.713012 75.173527

3 4 164.573830 12869.158312 2008.824655 78.196870

4 5 168.975822 12278.478058 2008.992327 72.664112

...

121 122 109.431595 7834.144888 2014.861422 71.589424

122 123 141.187892 6254.769075 2014.898693 44.301030

123 124 91.871574 3814.531454 2014.922147 41.520258

124 125 175.766895 11741.746927 2014.941517 66.802949

125 126 141.505127 4047.297678 2014.986550 28.601774

126 rows × 5 columns

plt.scatter(binned_data_df["mean_time"], binned_data_df["metric"])
plt.xlabel("Time")
plt.ylabel("\mathcal{M} Value")

Text(0, 0.5, '$\\mathcal{M}$ Value')

Pay attention to the fact that each data point represents the average time of 5 events and the metric value computed over the observations in each bin.

Again somewhat arbitrarily, I'll assign a cutoff value on the metric to "determine" when repeates hvae been identified (how should I go about doing this more computationally/rigorously?)

val = 40

plt.scatter(binned_data_df["mean_time"], binned_data_df["metric"])
plt.xlabel("Time")
plt.ylabel("\mathcal{M} Value")

plt.axhline(y = val, color = "red")

<matplotlib.lines.Line2D at 0x11e814f90>

So I'm claiming that there is some evidence for repeated neutrino emission from the blazar for the scatter points that are below the red line. Remember each point on this plot represents
five neutrino observations so more work would need to be done to determine which (if any) of the neutrino events inside each of these scatter points that lie below the red line also came
from the blazar.

In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

In [6]:

Out[6]:

In [7]:

In [8]:

Out[8]:

In [9]:

Out[9]:

In [10]:

In [11]:

In [12]:

In [13]:

Out[13]:

In [14]:

In [15]:

Out[15]:

In [16]:

In [17]:

Out[17]:

In [18]:

In [19]:

In [20]:

In [21]:

In [22]:

Out[22]:

In [23]:

Out[23]:

In [24]:

In [25]:

Out[25]:

In [26]:

Out[26]:

In [27]:

cos θ = sin δsrc sin δpnt + cos δsrc cos δpnt cos(αsrc − αpnt)

δ α

r = D tan θ

D

In [28]:

In [29]:

In [30]:

In [31]:

In [32]:

In [33]:

Out[33]:

In [34]:

In [35]:

Out[35]:

M

M =
∑

n(bin)

i
Eidi

∑
n(bin)

i
Ei

In [36]:

Out[36]:

In [43]:

Out[43]:

In [44]:

In [45]:

Out[45]:

In [49]:

Out[49]:

In [52]:

Out[52]:

In []:

In []:

In []:

https://icecube.wisc.edu/data-releases/2018/07/icecube-data-from-2008-to-2017-related-to-analysis-of-txs-0506056/
https://www.science.org/doi/10.1126/science.aat2890
https://physics.stackexchange.com/questions/224950/how-can-i-convert-right-ascension-and-declination-to-distances
http://www.csgnetwork.com/julianmodifdateconv.html
https://www.science.org/doi/10.1126/science.aat2890
https://www.science.org/doi/10.1126/science.aat2890

