Derivation of the Wave Equation

Andrew Valentini

May 2023

Andrew '		

Derivation of the Wave Equation

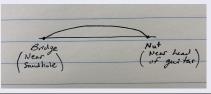
May 2023

Setup

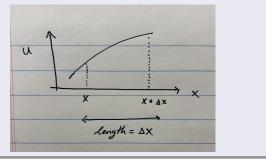
• Consider a string subject to the conditions:

- Only vibrates in a fixed plane
- Constant mass density ρ
- Perfectly elastic and experiences no resistance
- Transverse vibrations are small and occur in the x-axis (overall motion of the string depends only on the y-displacement and time)

• Such assumptions are not unrealistic. Consider a taut guitar string:



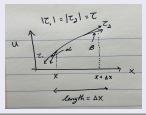
• Consider an infinitesimal region on the string of length Δx :



Relevant Forces

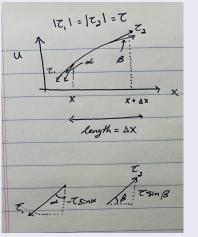
• String is taut \implies tension force τ :

 Magnitude of τ must be equal on both ends but the positions we consider differ in angle ⇒ two tension components τ₁ and τ₂ at angles α and β:



Relevant Forces Continued

• No motion in x-direction so we only consider the y-components of these tension forces:



Andrew Valentini

Derivation of the Wave Equation

May 2023

5/12

Considering the Trigonometry of the String Segment

• Tension forces must balance because $|\tau_1| = |\tau_2| = \tau$ so:

$$\tau sin(\beta) = \tau sin(\alpha)$$

• By Newton's Second Law, the sum of tension forces must be equal to a mass multiplied by an acceleration:

$$-\tau sin(\alpha) + \tau sin(\beta) = F = ma$$

• Consider the small angle approximations $sin(\theta) \approx \theta$, $tan(\theta) \approx \theta$. $sin(\theta) = tan(\theta)$ under this approximation so make the replacement:

$$-\tau tan(\alpha) + \tau tan(\beta) = F = ma$$

Applying Newton's Second Law

• Recall in 1 dimension that:

$$F = ma = m\frac{d^2x}{dt^2}$$

• Because string depends on y-position and time u(y, t):

$$F = ma = m\frac{\partial^2 u}{\partial t^2}$$

• Combining this with the previous trig replacement:

$$-\tau \tan(\alpha) + \tau \tan(\beta) = F = m \frac{\partial^2 u}{\partial t^2}$$

Calc 1 Definition of Tangents

• Recall from Calc 1 that a tangent line to a point is considered its derivative and the limit definition of a derivative is:

$$\lim_{x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{df}{dx}$$

- In this multivariable case u(y, t), the variable in question here is the *y*-component so the tangent becomes a partial derivative
- Also remember that we consider a segment of string so evaluate these partials at both ends:

$$\tau \tan(\alpha) = \tau \frac{\partial u}{\partial x}\Big|_{(x)}$$
$$\tau \tan(\beta) = \tau \frac{\partial u}{\partial x}\Big|_{(x+\Delta x)}$$

Applying to Earlier Expression

• From original expression:

$$-\tau tan(\alpha) + \tau tan(\beta) = F = m \frac{\partial^2 u}{\partial t^2}$$

• Replace definitions for $tan(\alpha)$ and $tan(\beta)$ from last slide:

$$-\tau \frac{\partial u}{\partial x}\Big|_{(x+\Delta x)} + \tau \frac{\partial u}{\partial x}\Big|_{(x+\Delta x)} = F = m \frac{\partial^2 u}{\partial t^2}$$

• Rearranging to get to a familiar form:

$$\tau\left(\frac{\partial u}{\partial x}\Big|_{(x+\Delta x)}-\frac{\partial u}{\partial x}\Big|_{(x+\Delta x)}\right)=m\frac{\partial^2 u}{\partial t^2}$$

• Notice that left side of the expression:

$$\tau\left(\frac{\partial u}{\partial x}\Big|_{(x+\Delta x)} - \frac{\partial u}{\partial x}\Big|_{(x)}\right) = m\frac{\partial^2 u}{\partial t^2}$$

is again in the form for the definition of a derivative:

$$\lim_{x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{df}{dx}$$

without the Δx term in the denominator. Divide both sides by this Δx term so left side is turned into a second derivative:

$$\tau \frac{\partial^2 u}{\partial x^2} = \frac{m}{\Delta x} \frac{\partial^2 u}{\partial t^2}$$

• Again, we have a multivariable expression so the derivative is a partial here as well.

Wave Equation Recovered

• Recall we are considering an infinitesimal of string and currently have:

$$\tau \frac{\partial^2 u}{\partial x^2} = \frac{m}{\Delta x} \frac{\partial^2 u}{\partial t^2}$$

- Where *m* refers to the overall mass of the string and Δx refers to the length of this small segment.
- Define $\frac{m}{\Delta x}$ to be the mass density ρ of the string.
- Divide τ to right side. $\frac{\tau}{\rho}$ has units of $\frac{[\text{length}]^2}{[\text{time}]^2}$ so call this c^2 (a velocity).

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

- Leaving you with the standard form of the wave equation [1] in one spatial dimension.
- Note that this could be easily extended to multiple dimensions since the system is linear.
 Andrew Valentini
 Derivation of the Wave Equation
 May 2023

[1] Nakhlé H Asmar. *Partial Differential Equations and Boundary Value Problems*. Upper Saddle River, N.J.: Prentice Hall, 2000.