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General relativity is a subject that has too far-reaching of conclusions about the nature of reality
and our universe to be only understood by specialists. If a non-specialist wishes to understand
the theory without having to spend months or years studying it, they are often forced to resort to
popular science articles that do not provide the theory’s full depth and often simplify its details to
the point of misrepresentation. In this report, I provide an introduction to general relativity at the
undergraduate level that provides more insight into the theory than popular science treatments but
does not utilize the level of rigor that is typically encountered in graduate-level treatments. I first
give a justification for the hallmark of general relativity, the Einstein field equations, then show how
they can be applied to describe a class of universes, and end by briefly reviewing the experimental
results that confirm theoretical predictions made by these cosmological models. The intention of
this report is not to properly educate a reader on general relativity and cosmology but to expose
them to the basic theoretical structure of the matter and should serve as a starting point for the
curious reader.

I. INTRODUCTION

First formulated in 1915 by Albert Einstein, the Ein-
stein field equations are a set of highly coupled partial dif-
ferential equations that describe the curvature of space-
time. Though an exact solution to these equations is
difficult to construct due to the coupled components and
the vast number of partial derivatives, physicists have
been able to describe complex phenomena with them by
making simplifying assumptions about the system they
are attempting to model. To give the reader an under-
standing deeper than is given at the popular science level
and in an attempt to display just how complex the field
equations are, I will first give a justification for them
from classical Newtonian gravity. I hope this exposition
of the field equations is self-contained enough so that a
reader can understand all of the terms that are hidden
by the compact tensorial representation and so that no
additional resources are needed to leave with a better un-
derstanding of how general relativity describes spacetime
curvature.

To give an example of the sort of simplifying assump-
tions that are required to construct a solution to the field
equations and to introduce the reader to a historical set
of solutions to these equations that have been crucial to
our understanding of the universe, I will then show how
the Robertson-Walker metric can be derived. It isn’t di-
rectly shown that the resulting metric provides a solution
to the field equations in this work but resources where
this is done are cited for the curious reader. I finish the
article by briefly reviewing the experimental results that
have come as a result of the Robertson-Walker metric to
emphasize how far-reaching its consequences are and to
provide evidence for the fact that the assumptions used
to simplify this model are not unrealistic.

II. JUSTIFICATION FOR THE EINSTEIN
FIELD EQUATIONS

A. Motivation from Newtonian Gravity

This section will provide motivation for the form of
the Einstein field equations. This is in no way a full
derivation of the Einstein field equations, as such an ef-
fort requires a great deal of classical mechanics and dif-
ferential geometry that would be unnecessarily detailed
at the level of this presentation1. This will largely follow
the justification given in [4]. I will do my best to eluci-
date as many steps as I can and make this document as
self-contained as possible. I will first begin by summariz-
ing Newtonian gravitational theory and use its result as a
sort of proto-gravitational field equation that will inform
us of how to construct a more generalized, tensorial field
equation.
To begin, when one considers the acceleration due to

a gravitational force, the resulting expression for ∥g∥ is
given by

∥g∥ =
GM

∥r∥2
. (1)

If one then applies the divergence theorem to this vector
field, g, then one gets˚

V

(∇ · g) dV =

‹

S(V )

g · n̂ dS. (2)

Since we are considering a gravitational field extending
from a point source in three-dimensional space, S(V )
will be the surface area for a sphere. Since our gravi-
tational acceleration vector, g will always act in the op-
posite direction of the normal vector to this sphere, n̂,

1 A common derivation of the field equations starts from the con-
sideration of the Einstein-Hilbert action, as shown in [1–3].
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g · n̂ = −∥g∥. This considerations alter Eq. (2) to be of
the form ˚

V

(∇ · g) dV = −4πGm. (3)

Since the mass enclosed by this sphere can be written
as a volume integral of the density, ρ, inside this sphere,
this becomes˚

V

(∇ · g) dV = −4πG

˚

V

ρ dV, (4)

which means by inspection that

∇ · g = −4πGρ. (5)

We can now define the gravitational potential, ϕ, which
is gravitational potential energy per unit mass, as

∥ϕ∥ =
Gm

∥r∥
. (6)

By comparing Eq. (6) and Eq. (1), it’s clear that ϕ
can be written as g = ∇ϕ since r is the only spatial
coordinate, which makes Eq. (3)

∇2ϕ = −4πGρ. (7)

This tells us that the gravitational potential field in New-
tonian gravity is only caused by the mass density in that
field.

B. Generalizing Newtonian Gravity

Given that we know the Newtonian gravitational po-
tential to be a description able to describe the trajectory
of objects in weak gravitational fields, it makes sense to
use this theory of gravity as a base upon which to build
a more generalized theory of gravity, using the tools of
differential geometry.

Because the stress-energy tensor, Tαβ , offers a gener-
alized description of mass density by encapsulating the
energy density and momentum flux in addition to the
mass density, it is reasonable to expect it to replace the
ρ term in Eq. (7) when we generalize our theory of grav-
ity. The stress-energy tensor is defined as

Tαβ = (ρ+ p)UαUβ + pgαβ (8)

for a perfect fluid [4] where U, the four-velocity of parti-
cles moving across some surface, is defined as

U =

(
1√

1− v2
,

vx√
1− v2

, . . .

)
(9)

in some frame of reference, O, p is the momentum of the
particles, ρ is now the mass-energy density, and gαβ is
the inverse metric, which will be discussed later.

To further generalize Eq. (7), the Laplacian operator
acting on the gravitational potential will be replaced by
a general differential operator, O, acting on the metric
tensor g, which is defined as

g = gαβdx
αdxβ (10)

where the Einstein summation convention has been used
to implicitly indicate a sum over the repeated α and β
indices. The metric tensor is an object that captures
properties of the intrinsic geometry of some manifold.
We can then make the last step in generalizing Eq. (7)
by replacing its −4πG term with a general constant, k.
All of these generalizations of Eq. (7) result in

O(g) = kT. (11)

Since T is a rank-two contravariant tensor, indicated by
the position of its indices in Eq. (8), we would expect
that the differential operator O would produce a tensor
of the same rank due to their equality. Since this operator
is acting on the metric, we would additionally expect it to
feature components Oαβ that are combinations of gαβ,σλ,
gαβ,σ, and gαβ where the notation

gαβ,σλ ≡ ∂gαβ
∂xσ∂xλ

(12)

has been used.
It is stated in [4] that any tensor of the form

Oαβ = Rαβ + µgαβR+ Λgαβ (13)

where µ and Λ are arbitrary constants will ensure that O
contains components of gαβ,σλ, gαβ,σ, and gαβ . Though
this choice seems arbitrary, it was likely chosen with
the foresight of the results arrived at through an actual
derivation of the Einstein field equations. Eq. (13) con-
tains the Ricci tensor, Rαβ , which is defined as

Rαβ =
1

2
gµσ

(
gσβ,αµ − gσµ,αβ + gαµ,σβ − gαβ,σµ

)
(14)

and captures the curvature of a manifold by taking var-
ious second-order partial derivatives with respect to the
metric where the raised indices in the metric terms indi-
cate the inverted metric. For example, if one takes the
metric to be a matrix with only non-zero diagonal com-
ponents (which it often is), the inverse of this metric will
just invert the diagonal components.
The R term in Eq. (13) is called the Ricci scalar, which

more compactly captures the curvature of a manifold by
only describing the average curvature at any point on
that manifold. This is defined by summing the product
of every term of the inverse metric by every term of the
Ricci tensor

R = gαβRαβ . (15)

To continue, the strong equivalence principle, which
states that all laws our physics are equivalent in all ref-
erence frames, that the gravitational acceleration will re-
main the same for any object experiencing it, and that
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the effects of gravity are indistinguishable from the effects
of acceleration in flat spacetime, must be employed. The
assumption of the strong equivalence principle and that
it holds at all scales of the universe has not been experi-
mentally proven to be incorrect. Since the principle must
hold at all scales, analyzing a single point in spacetime
will allow us to arrive at the Einstein field equations.

It is assumed that for a local inertial frame at a single
point in spacetime, the metric will be approximately that
of special relativity (flat spacetime), where the only dif-
ferences are up to second order derivatives of the metric.
Therefore, at some point P, the metric will be

gαβ(P) = ηαβ (16)

and its first-order derivative will be

∂gαβ
∂xγ

(P) ≡ gαβ,γ(P) = 0 (17)

because the spacetime is flat according to a local inertial
frame where ηαβ is the flat spacetime metric, defined as

ηαβ =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (18)

The covariant derivative, defined as

V γ
;µ =

∂V α

∂xµ
+ V βΓγ

βµ (19)

captures how a tensor changes from one point to an-
other in any spacetime due to its dependence on Γγ

βµ,
the Christoffel symbols, which are defined by first-order
derivatives of the metric

Γγ
βµ =

1

2
gαγ

(
∂gαβ
∂xµ

+
∂gαµ
∂xβ

− ∂gβµ
∂xα

)
. (20)

Since we are considering a flat spacetime metric at some
point, P, all of the terms in the Christoffel symbols van-
ish due to Eq. (17), leaving the covariant derivative V γ

;µ

directly equal to the regular partial derivatives, V α
µ , in

Eq. (19).
Since we are considering a single point, P, in flat space-

time, it cannot be the case that the properties described
by the stress-energy tensor, Tαβ , at that point change,
meaning2

∂Tαβ

∂xµ
(P) = 0. (21)

In fact, the statement must hold for any spacetime when
you don’t restrict the metric and must therefore consider

2 This statement is equivalent to the conservation of momentum
and energy.

the contribution of the Christoffel symbols, leading to the
result that

Tαβ
;µ = 0. (22)

Returning to our developing generalization of the New-
tonian gravitational field

Rαβ + µgαβR+ Λgαβ = kTαβ (23)

since Eq. (22) is applied to the right-hand of this expres-
sion, the statement must also be applied to the left-hand
side, meaning we must force(

Rαβ + µgαβR+ Λgαβ
)
;µ

= 0 (24)

to be true.
It is a rule that for any basis, gαβ;µ = 0 so we must

ensure that (
Rαβ + µgαβR

)
;µ

= 0. (25)

With great convenience, this expression is exactly equal
to the Einstein tensor, Gαβ when µ = 1/2, which is al-
ready defined such that Gαβ

;µ = 0. This means that when

one treats the left-hand side of Eq. (23) as Gαβ +Λgαβ ,
a valid tensor expression is derived, leaving us with

Gαβ + Λgαβ = kTαβ (26)

which is exactly the general form of the Einstein field
equations3!
Because the Einstein field equations contain rank-two

tensors in all terms, there are sixteen components that
must be studied in order to derive a solution to the field
equations4. Because these components are all highly cou-
pled and contain many partial derivatives of the metric,
one needs to employ many simplifying assumptions to
their model or make use of modern supercomputers if
they wish to describe a spacetime that is allowed by gen-
eral relativity.

III. COSMOLOGICAL STRUCTURE AND
EXPANSION

A. The Robertson-Walker Metric

After Einstein’s theory of general relativity was pub-
lished in 1916, two notable metric solutions to his field
equations appeared in the following year. The first, pub-
lished by Karl Schwarzschild in 1916, described the space-
time around a non-rotating spherical mass [5]. The sec-
ond, published by Einstein himself in 1917, described a

3 In natural units (G = c = 1), it is shown that k = 8π in [2, 3].
4 There are actually ten independent components in the Einstein
field equations but this does not reduce the immense complexity
necessary to derive a solution to them.
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finite and static universe with spherical spatial curvature
[6].

A more sophisticated model of the universe was
later independently developed by Howard Robertson and
Arthur Walker in 1935, which has now become known
as the Robertson-Walker metric [7, 8]. In their model,
they describe a universe which is both homogeneous and
isotropic. A homogeneous universe is one that, when av-
eraged over large scales, appears to have an even distri-
bution of matter and energy. An isotropic universe is one
in which you would not be able to distinguish one direc-
tion in the sky from another. These assumptions about
the large-scale structure of our universe have come to be
known as the cosmological principle and, as will be dis-
cussed later, have been experimentally validated to great
precision.

The cosmological principle therefore allows us to as-
sume the spacetime of our universe to be of the form
R × Σ, where R is the real line of the time dimension
and Σ are the maximally-symmetric spatial dimensions
[2, 3]. Because this space is assumed to be maximally
symmetric, it is most reasonable to describe it as a sphere
in spherical coordinates. To begin the derivation of the
Robertson-Walker metric, we first derive the metric of
flat spacetime in spherical coordinates.

For the transformation from Cartesian to spherical
coordinates, the conversions x = r sin θ cosϕ, y =
r sin θ sinϕ, and z = cos θ are necessary. The general
metric in these coordinates is defined as the following
collection of basis vector products:

gαβ =

 e⃗t · e⃗t e⃗t · e⃗r e⃗t · e⃗θ e⃗t · e⃗ϕ
e⃗r · e⃗t e⃗r · e⃗r e⃗r · e⃗θ e⃗r · e⃗ϕ
e⃗θ · e⃗t e⃗θ · e⃗r e⃗θ · e⃗θ e⃗θ · e⃗ϕ
e⃗ϕ · e⃗t e⃗ϕ · e⃗r e⃗ϕ · e⃗θ e⃗ϕ · e⃗ϕ

 . (27)

Since this transformation from Cartesian to spherical co-
ordinates does not depend on t, e⃗t will be of the form
⟨dt, 0, 0, 0⟩ and e⃗i, where i ∈ {x, y, z}, will be of the form
⟨0, ..., ..., ...⟩, which means that e⃗t · e⃗i = 0. This turns our
metric into

gαβ =

e⃗t · e⃗t 0 0 0
0 e⃗r · e⃗r e⃗r · e⃗θ e⃗r · e⃗ϕ
0 e⃗θ · e⃗r e⃗θ · e⃗θ e⃗θ · e⃗ϕ
0 e⃗ϕ · e⃗r e⃗ϕ · e⃗θ e⃗ϕ · e⃗ϕ

 . (28)

To compute e⃗r, e⃗θ, and e⃗ϕ, the transformation

e⃗α′ = Λβ
α′ e⃗β (29)

will be used with x = r sin θ cosϕ, y = r sin θ sinϕ, and

z = r cos θ where Λβ
α′ is the general coordinate transfor-

mation, defined as [4]

Λβ
α′ ≡

∂xβ

∂xα′ . (30)

This transformation in spherical coordinates results in

e⃗r =
∂x

∂r
e⃗x +

∂y

∂r
e⃗y +

∂z

∂r
e⃗z

=⇒ e⃗r = sin θ cosϕe⃗x + sin θ sinϕe⃗y + cos θe⃗z

(31)

e⃗θ =
∂x

∂θ
e⃗x +

∂y

∂θ
e⃗y +

∂z

∂θ
e⃗z

=⇒ e⃗θ = r cos θ cosϕe⃗x + r cos θ sinϕe⃗y − r sin θe⃗z
(32)

e⃗ϕ =
∂x

∂ϕ
e⃗x +

∂y

∂ϕ
e⃗y +

∂z

∂ϕ
e⃗z

=⇒ e⃗ϕ = −r sin θ sinϕe⃗x + r sin θ cosϕe⃗y.

(33)

By direct computation, it can then be shown that e⃗θ ·e⃗r =
e⃗r · e⃗θ = e⃗r · e⃗ϕ = e⃗ϕ · e⃗r = e⃗θ · e⃗ϕ = e⃗ϕ · e⃗θ = 0, which
are notably all of the off-diagonal elements in gαβ . It can
also then be shown by direct computation that e⃗r ·e⃗r = 1,
e⃗θ · e⃗θ = r2, and e⃗ϕ · e⃗ϕ = r2 sin2 θ. This results in the
metric

gαβ =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 . (34)

It’s important to note that while direct computation of
e⃗t · e⃗t would result in 1, the negative sign is added to in-
dicate the fact that we do not experience temporal sym-
metry5.

Because the spatial components in Eq. (34) represent
a sphere with a constant radius value, we can assume
that this grr component can be replaced by some func-
tion f(r), that provides a generalized description of the
universe’s spatial curvature and is only dependent on the
radius. Again, due to symmetry, grr can only be a func-
tion of r because the object considered is spherically sym-
metric. If grr depended on the angles θ or ϕ, we would no
longer have a maximally-symmetric object. Most text-
books on the subject assume f(r) = e2Λ(r) for math-
ematical convenience since this exponential term makes
the derivation’s subsequent partial derivatives more man-
ageable.

These assumptions result in the modified metric

gαβ =


−1 0 0 0
0 e2Λ 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 . (35)

Schutz [4] goes on to compute the Einstein tensor and
Ricci scalar, (15), for this developing metric so that it
can be applied to the Einstein field equations.

5 The existence of temporal symmetry would imply that the past
is no different from the future. The signage of gtt = −1 is an
arbitrary choice, however. Some textbooks will often use the
convention that gtt = 1 and force the spatial components of the
metric to carry negative signs. The variation of signage between
the temporal and spatial components is necessary to indicate
the directionality of time and its distinction from our spatial
dimensions [9].
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The Ricci scalar results in

R =
2

r2
d

dr

(
1− (re−2Λ)

)
. (36)

Because the Ricci scalar only represents the average
curvature at a single point, it must be the case that R in
the previous expression will just be some constant, k

k =
2

r2
d

dr

(
1− (re−2Λ)

)
. (37)

This expression can now be integrated in the following
way:

ˆ
kr2

2
dr =

ˆ
d

dr

(
1− (re−2Λ)

)
dr (38)

=⇒ kr3

6
+A = 1− (re−2Λ) (39)

where A is just some constant of integration.
Since grr = e2Λ, we can use the previous result to find

a closed form solution for grr. Rearranging the previous
expression results in

e2Λ = grr =
1

1− 1
6kr

2 − A
r

. (40)

Demanding the local flatness condition, given by Eq.
(16), grr = 1 at some point, P, where r = 0. In or-
der for this to be satisfied, it must be true that A = 0.
This results in

grr =
1

1− 1
6kr

2
. (41)

Substituting this back into our metric results in

gαβ =


−1 0 0 0
0 1

1− 1
6kr

2 0 0

0 0 r2 0
0 0 0 r2 sin2 θ

 . (42)

We can generalize this result by introducing a positive
scale factor, defined by convention to be a2(t), into the
spatial components of the metric because this does not
violate the symmetry we have required6

gαβ =


−1 0 0 0

0 a2(t)

1− 1
6kr

2 0 0

0 0 a2(t)r2 0
0 0 0 a2(t)r2 sin2 θ

 . (43)

6 This a(t) scale factor is interpreted to be the expansion or con-
traction of the universe. Our metric therefore describes a max-
imally symmetric object that can be expanding or contracting.
The form of this scale factor will be explained in the following
subsection.

Note that we cannot multiply the gtt component by this
scaling factor because we have demanded gtt,t = 0; that
our metric, describing the structure of the universe, not
change over time.
Eq. (43) is the general Robertson-Walker metric. It is

commonly expressed in the spacetime interval

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
(44)

where dΩ2 = dθ2 + sin2 θdϕ2

B. Three Possible Geometries

It has been shown that if a universe is homogeneous
and isotropic, it must have the metric described by Eq.
(44). With the general metric of a homogeneous and
isotropic universe defined, we should now turn our atten-
tion to its k-factor and consider what sort of geometries
are described by it. This metric is shown to be homo-
geneous and isotropic for all k-values in [10, 11]. Notice
that scale the r coordinate such that k is only allowed
to take on three possible values: −1, 0, 1. For example,
if k = −3, then r could be redefined as r̃ =

√
3r and

ã(t) = a(t)/
√
3 so the spacetime interval would remain

unchanged

ds2 = −dt2 + ã2(t)

[
dr̃2

1− r̃2
+ r̃2dΩ2

]
. (45)

This implies there are only three possible geometries
we need to consider with the Robertson-Walker metric;
k = ±1 and k = 0. As we will see, the consideration of
these k-values is very important because they represent
drastically different spatial curvature geometries.
Starting with the k = 0 case, the Robertson-Walker

metric spacetime interval becomes

ds2 = −dt2 + a2(t)
[
dr2 + r2dΩ2

]
, (46)

which is the metric for a flat spacetime represented in
polar coordinates. Written just in terms of the metric,
the k = 0 case is of the form

gαβ =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t)r2 0
0 0 0 a2(t)r2 sin2 θ

 , (47)

which is shown by Appendix A to be the metric of a
four-dimensional sphere, called a three-sphere, with ra-
dius a(t) and with zero curvature. The k = 0 case of
the Robertson-Walker metric therefore describes a flat
universe that is homogeneous and isotropic.
When considering the k = 1 case it’s convenient to

define a new variable

dχ2 =
dr2

1− r2
. (48)
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Integrating both sides of this expression results in

χ = sin1(r), (49)

which means that r = sinχ, transforming the Robertson-
Walker metric into the form

ds2 = −dt2 + a2(t)
[
dχ2 + sin2(χ)dΩ2

]
(50)

whose metric is therefore

gαβ =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) sin2 χ 0
0 0 0 a2(t) sin2 χ sin2 θ

 .

(51)
This is again shown by Appendix A to be the metric de-
scribing a three-sphere with radius a(t) and with positive
curvature. This model is called the closed or spherical
Robertson-Walker metric, analogous to the surface of a
balloon.

When considering the k = −1 case, it’s similarly con-
venient to define the parameter:

dχ2 =
dr2

1 + r2
. (52)

Integrating both sides of this expression results in

χ = sinh−1(r) (53)

which means that r = sinh(χ), transforming the
Robertson-Walker spacetime interval into the form:

ds2 = −dt2 + a2(t)
[
dχ2 + sinh2(χ)dΩ2

]
(54)

and resulting in the metric

gαβ =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) sinh2 χ 0
0 0 0 a2(t) sinh2 χ sin2 θ

 .

(55)
The spatial components of this metric again represent
those of a three-sphere but the underlying geometry has
changed. The k = −1 case instead describes a three-
sphere with negative curvature and is called the hyper-
bolic or open Robertson-Walker metric, which analogizes
our universe to the shape of a saddle.

It will be shown in the following section that we cur-
rently believe our universe to be most accurately de-
scribed by the flat Robertson-Walker metric.

C. Expansion

Though the following derivation is typically carried out
by solving for the scale factor, a(t), in Eq. (43) by solv-
ing the Einstein field equations with a Robertson-Walker

metric7, a more intuitive and informative derivation for
the purposes of this report will be carried out by consid-
ering a test mass on an expanding spherical surface8.
Considering the Newtonian gravitational force experi-

enced by a test mass at some distance away from the
origin, r, of a three-dimensional sphere with mass den-
sity, ρ, results in

F =
4

3
πGρmr. (56)

This means that the gravitational potential energy be-
tween the center of this sphere and the point is

U = −2

3
πGρmr2. (57)

The kinetic energy of this test mass will just be in the
traditional form

K =
1

2
mṙ2, (58)

where ṙ ≡ dr/dt.
By the conservation of energy, we know that the sum

of the kinetic and potential energy must not change over
time; that it must equal some constant, C

C =
1

2
mṙ2 − 2

3
πGρmr2. (59)

Since we are assuming a homogeneous and isotropic
universe that is uniformly expanding, the notion of co-
moving coordinates is employed to indicate the coordi-
nate system that is carried along with this expansion
and so is unchanged over time. Because the expansion
is uniform, there will be a relationship between the “real
coordinates” of an object, r (which we have defined as
the distance of a test mass to the center of this expanding
universe), and the comoving distances that are measured,
x. This is written as

r = a(t)x, (60)

where a(t) is called the scale factor of the universe [13].
This relationship can be used to rewrite Eq. (59) in terms
of this scale factor as

C =
1

2
mȧ2x2 − 2

3
πGρma2x2. (61)

Solving for ȧ/a by multiplying this expression by
2C/ma2x2 results in(

ȧ

a

)2

=
4πGρ

3
+

2C

ma2x2
. (62)

7 This can be seen in [2, 3, 12], for example.
8 In this way, we are forcing a2(t) to be positive, which is an as-
sumption that will be shown to be experimentally validated in
the following section.
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If we now consider this expression in natural units (G =
c = 1) and define k = −2C/mx2, this expression becomes(

ȧ

a

)2

=
4πρ

3
− k

a2
, (63)

which is the first of the Friedmann equations. This de-
scribes the change in expansion of our universe over time
with respect to its initial expansion rate9. It should
be noted that the inclusion of the cosmological constant
term, Λ, from the Einstein field equations changes very
little of the results of this report’s derivations. When Λ
is considered in the full derivation of the first Friedmann
equation, [13] tells us that we get the expression(

ȧ

a

)2

=
4πρ

3
− k

a2
+

Λ

3
. (64)

The existence of this scale factor, a(t) in the
Robertson-Walker metric tells us that the Einstein field
equations require that a homogeneous and isotropic uni-
verse either be uniformly expanding or contracting. The
Einstein field equations do not allow homogeneous and
isotropic universes to be static10.

IV. EXPERIMENTAL VALIDATION

The derivations of the previous section assumed an ex-
panding homogeneous and isotropic universe. After de-
riving the Robertson-Walker metric, Eq. (43), the claim
that the k = 0 condition describes our universe was addi-
tionally made. In this section, a brief historical overview
of how we have come to know such statements to be true
will be given.

A. Evidence of Expansion

The theoretical discovery that the universe would need
to be expanding to satisfy the Einstein field equations,
Eq. (64), was first made by Alexander Friedmann in 1922
[14]. This was later independently discovered by the Bel-
gian priest, George Lemaitre, in 1927 [15]. Lemaitre rec-
ognized that this dynamic picture of the universe should
imply an explosive expansion from an extremely hot and
dense initial state, a state he called the “primeval atom”.
In both papers, the change in the expansion of the uni-
verse over time with respect to its initial expansion was

9 It’s a common misconception that the universe’s expansion is
constant. As we have shown, however, it is rather the change
in this expansion over time with respect to its initial expansion
that is constant.

10 Again, we began this derivation with the assumption of a spheri-
cally expanding object. A more general derivation requires solv-
ing the Einstein field equations for a Robertson-Walker metric
and solving for a(t).

described by Eq. (64). This was defined to be some
arbitrary constant, H0

H0 ≡ ȧ(t)

a(t)
. (65)

In 1929, the astronomer Edwin Hubble was measuring
distances to nearby galaxies with stars that undergo very
regular periods of fluctuation in their luminosity when
he discovered that these galaxies were moving away from
our own and the rate at which they were moving away
was proportional to the distance they were away from
us [16]. Hubble’s first published measurements on this
relationship were given in [16], which is reproduced here:

FIG. 1. The original plot of Hubble’s redshift-distance re-
lationship in his 1929 paper [16]. It shows that the rate at
which galaxies are moving away from us is proportional to
their distance away from us. This observation confirmed the
theoretical predictions made by Alexander Friedmann in 1922
and George Lemaitre in 1927 that the universe is expanding
and formed the basis of the Hubble law.

This observation was called the redshift-distance rela-
tion since the redshift of an object is related to its re-
cessional velocity. The observation formed the basis for
Hubble’s law, written as

v = H0d, (66)

where v is a galaxy’s recessional velocity and d is its dis-
tance away from us. This experimentally confirmed the
existence of the ȧ(t)/a(t) term that appeared in Fried-
mann and Lemaitre’s Robertson-Walker metric solutions
to the Einstein field equations and informed us that it
had a direct impact on the recessional velocities of ob-
jects in our universe.

B. Discovery of the Cosmic Microwave Background

In 1900, Max Planck was able to heuristically derive a
formula to describe the observed spectrum of radiation
from an idealized object with complete absorption of all
energy incident upon it and with the perfect emission of
light across the entire electromagnetic spectrum. This
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spectrum of the intensity of light B(f, T ) at a specific
frequency f and temperature T is defined as [17]

B(f, T ) =
2hf3

c2
1

ehf/kBT − 1
. (67)

This description of “blackbody” radiation resolved the di-
vergence at high frequencies predicted by classical physics
and ushered in the quantum revolution by requiring that
energy come in discrete packets. This result tells us that
any object at a non-zero temperature will radiate parti-
cles of light, photons, in intensities given by the expres-
sion above.

During the 1930s and 1940s, cosmologists began con-
sidering how this law of blackbody radiation could be
applied to the universe since we know the universe to
contain electromagnetic radiation [18]. During the early
universe, this radiation was expected to have been scat-
tered and absorbed by the early matter, which would re-
sult in thermal radiation featuring a blackbody spectrum
with a characteristic temperature. As the universe ex-
pands, the temperature of this radiation would decrease
as the scale of the universe increases, meaning it would
have become redshifted over time due to the expansion.
It was first realized by Richard Tolman that as one goes
further back in the history of the universe, this radiation
would increasingly dominate the matter of the universe
[19]. It was therefore theorized that this early radiation,
later called the cosmic microwave background, could be
observable with a powerful enough telescope.

This radiation was accidentally discovered by Arno
Penzias and Robert Wilson while working with a large
microwave horn antenna designed for satellite commu-
nications at Bell Labs in 1964. Although Penzias and
Wilson originally thought the detected signal originated
from pigeon droppings on the telescope’s surface after
discovering a nest in the telescope’s antenna11, they en-
listed the help of Robert Dicke, who was actively search-
ing for the cosmic microwave background radiation at
Princeton University, when they learned about the theo-
retical predictions of this radiation [20]. When it was con-
firmed that they were detecting radiation from the early
universe, Penzias and Wilson published their measure-
ments of the cosmic microwave background in 1965 and
Robert Dicke’s group published their own in the same
year [21, 22].

In 1989, the Cosmic Background Explorer (COBE) was
launched with the intention of providing much more accu-
rate measurements of the cosmic microwave background.
The results of its initial measurements were released in
a 1992 paper [23] which later won George Smoot and
John Mather, who were the principal investigators for
the satellite, the 2006 Nobel Prize. In this paper, the

11 The pair later ensured that pigeons would not threaten their fu-
ture observations by shooting all that were found near the tele-
scope with a shotgun [20].

collaboration displayed the initial findings of COBE and
showed the degree of accuracy to which the cosmic mi-
crowave background obeys the Planck spectrum, given
by Eq. (67). The collaboration’s initial data is shown in
the following plot:

FIG. 2. The cosmic microwave background data collected by
COBE, published in the collaboration’s first paper [23]. The
observed data almost exactly matches the theoretical curve
at 2.728 ± .004 K, making this the “most perfect blackbody
astronomically observed” [24].

C. Evidence of Homogeneity and Isotropy

In addition to offering the most precise measurement
of the cosmic microwave background up to the 1990s,
the COBE satellite also allowed cosmologists to accu-
rately test the assumptions of homogeneity and isotropy
that cosmological models such as the Robertson-Walker
model, Eq. (44), depended on. Because the assump-
tions of homogeneity and isotropy are applied to the
large-scale structure of the universe, it’s clear that ex-
perimental verification of these assumptions requires ad-
vanced devices12. Prior to COBE, measurements of the
cosmic microwave background’s anisotropies were signif-
icantly limited by observational power due to the minute
fluctuations in this radiation. COBE’s precise measure-
ments collected temperature fluctuations in the cosmic
microwave background for two years and were able to
discover temperature fluctuations from the mean on the
order of 5× 10−6 K, first published in 1992 [25].
To make even more precise measurements of the cosmic

microwave background and its deviations from isotropy,
the Wilkinson Microwave Anisotropy Probe (WMAP)
was launched in 2001, and the Planck satellite in 2009.
Among many other significant cosmological discoveries,
these instruments have given theorists great confidence in
their models’ assumptions of homogeneity and isotropy.

12 Devices advanced enough to measure the large-scale structure of
the universe existed prior to COBE but were very imprecise.
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All measurements of the cosmic microwave background
indicate that the universe, at very large scales, looks the
same in all directions and has no preferred orientation.
The increasingly detailed measurements of the cosmic mi-
crowave background are visualized in the following figure:

FIG. 3. Measurements of the cosmic microwave background
made by COBE in 1990 [25], WMAP in 2003 [26], and the
Planck satellite in 2018 [27] visualized. Images compiled by
[28].

D. Evidence of a Flat Universe

In addition to allowing the assumptions of homogene-
ity and isotropy to be tested, the cosmic microwave back-
ground provides cosmologists a method to determine the
geometry of our universe. Though there are many ad-
ditional complications that need to be considered when
determining the geometry of the universe, such as its en-
ergy density, it is enough for the purposes of this report
to just provdie one of the ways in which the cosmic mi-
crowave background has allowed cosmologists to deter-
mine the structure of the universe.

Most important to determining the universe’s struc-
ture from the cosmic microwave background is the reg-
ular fluctuations in the early universe’s plasma. This
plasma resulted from the fusing of baryonic matter (nor-

mal matter such as protons and electrons) and photons,
brought about by the extremely high temperatures and
density of the early universe. The periodic fluctuations
of this plasma observed in the cosmic microwave back-
ground were caused by quantum fluctuations which led
to variations in energy densities. These density pertur-
bations caused pressure waves to propagate across the
plasma as the early universe began to cool which became
very periodic due to the characteristic speed of sound in
the plasma. Because of this, these early density pertur-
bations are given the name Baryon Acoustic Oscillations
(BAOs) and are described in much greater detail in [29].
Studying these BAOs allows cosmologists to determine

the structure of the universe because the distances these
oscillations were allowed to travel set a length scale and
a corresponding geometry to the early universe. This an-
gular acoustic scale is captured by the ℓA parameter and
the 2018 Planck satellite results [30] relate this to another
representation, 100θ∗. The first release of the Planck
satellite results reports this value to be 1.04097±0.00046,
which indicates that the early universe had a very flat
geometry. Measurements of large-scale structure and
galaxy distributions today additionally indicate a flat
universe [31, 32]. When combined, these results indi-
cate that our universe was flat in its early stages and its
curvature has remained nearly flat over its expansion.

V. CONCLUSION

In this report, a brief introduction to general relativity
and some of its consequences has been given. It’s impor-
tant to emphasize how complex the Einstein field equa-
tions are, meaning that exact solutions to them are diffi-
cult to construct. As has been shown, exact solutions can
be arrived at by greatly approximating the system that is
being attempted to be modeled (or by using the compu-
tational power of modern supercomputers). Both the far-
reaching consequences of general relativity and the sort
of simplifying assumptions necessary was emphasized in
the example of the Robertson-Walker metric, which was
one of the first exact solutions to the field equations.
The Robertson-Walker metric depends on the assump-
tion that the universe be homogeneous and isotropic at
large scales and, as was shown later in the report, such
assumptions accurately describe there universe we live
in. This report additionally provided a primer on the
theoretical motivation for why the field equations imply
the existence of a dynamic universe, how we have come
to know that the universe is expanding, and how we have
come to know that the universe is flat.
This report intends that a reader familiar with the ba-

sics of undergraduate physics and mathematics can come
away with a picture of how general relativity works at a
level that stands above the popular science level of treat-
ment and can come away with a better understanding of
what the theory has to say about the nature of the uni-
verse, which is one of the most important consequences
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of the theory. A deeper understanding of the theory and
its results will doubtlessly require the consultation of ad-
ditional resources that expose the theory in its full glory.
This report has provided some resources relevant to the
material discussed where the detail is given at a more
advanced level for the curious reader. This report should
not serve as a proper instruction on general relativity
but should expose the reader to the basic concepts of the
theory and should serve as a starting point for the reader
interested in learning general relativity.

Appendix A: Three-sphere Metric

If the following terms are defined:

w = r cos θ (A1)

z = r sinχ cos θ (A2)

x = r sinχ sin θ cosϕ (A3)

y = r sinχ sin θ sinϕ, (A4)

it can be shown that the coordinates (θ, ϕ, χ) define a
three-sphere with radius r in the following way:

x2 + y2 + z2 + w2 = r2 sin2 χ sin2 θ cos2 ϕ+

r2 sin2 χ sin2 θ sin2 ϕ+

r2 sin2 χ cos2 θ + r2 cos2 χ.

(A5)

Using the trigonometric identity cos2 η+sin2 η = 1 many
times, it is found that

x2 + y2 + z2 + w2 = r2, (A6)

which shows that Eq. (A1) - (A4) define a three-sphere
of radius r. Our choice of coordinates shows that this
definition of a three-sphere is just a further generalization
of spherical coordinates to a higher dimension.

To determine the metric of this three-sphere, we must
compute the basis vectors of its coordinates (θ, ϕ, χ) using
the regular transformation rule

e⃗α′ = Λβ
α′ e⃗β . (A7)

To compute the e⃗θ basis vector, the following must there-
fore be performed:

e⃗θ =
∂x

∂θ
e⃗x +

∂y

∂θ
e⃗y +

∂z

∂θ
e⃗z +

∂w

∂θ
e⃗w, (A8)

which results in

e⃗θ = r sinχ cos θ cosϕe⃗x

+r sinχ cos θ sinϕe⃗y − r sinχ sin θe⃗z.
(A9)

Using the same method to determine e⃗ϕ and e⃗χ results
in

e⃗ϕ = −r sinχ sin θe⃗x + r sinχ sin θ cosϕe⃗y, (A10)
e⃗χ = r cosχ sin θ cosϕe⃗x + r cosχ sin θ sinϕe⃗y

+r cosχ cos θe⃗z − r sinχe⃗w.
(A11)

From the definition of the metric’s components in terms
of basis vectors,

gαβ ≡ e⃗α · e⃗β , (A12)

the metric of the three-sphere can therefore be computed
to be of the form

gαβ =

r2 0 0
0 r2 sin2 χ 0
0 0 r2 sin2 χ sin2 θ

 (A13)

where gχχ = r2. From this, it’s clear that Eq. (50) con-
tains a three-sphere with radius a(t) in its spatial com-
ponents.
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