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1 Euler-Lagrange Equation Derivation

We want a process for finding the minimal path between two points (x1, y1) and
(x2, y2). To do this, we will imagine a scenario where a path y(x) that minimizes
the distance between two points is known, in addition to an “incorrect” path
that doesn’t do so, which we will call Y (x) = y(x) + αη(x) where η(x) is a
function that quantifies the difference between y(x) and Y (x) and α is some

constant that must be added to ensure that
∫ x2

x1
y(x)dx ≥

∫ x2

x1
Y (x)dx. This is

represented visually in Fig. 1.

x

y

y(x)

Y (x) = y(x) + αη(x)

(x1, y1)

(x2, y2)

Figure 1: Demonstrating two arbitrary paths between point (x1, y1) and (x2, y2),
where we know that y(x) takes the optimal path between these points, and Y (x)
is any other path taken.

The quantity we want to minimize; the total path length of some Y (x)
between points (x1, y1) and (x2, y2), can be represented as an integral over
some function that depends on y(x), y′(x), and x:

S =

∫ x2

x1

f
[
y(x), y′(x), x

]
dx. (1)

If we consider the non-optimal path in this expression, we will have an S(α) of
the form

S(α) =

∫ x2

x1

f
[
y(x) + αη(x), y′(x) + αη′(x), x

]
(2)

since α is not integrated over the path; it is a free variable.
To find the optimal path between our points, we must therefore find where

f achieves its minimum when we let α = 0. To achieve this, we want to find
where ∂f

∂α = 0. Because we have said that f = f(y, y′, x), we must use the chain
rule to express ∂αf :

∂f(Y, Y ′, x)

∂α
=

∂f

∂Y

∂Y

∂α
+

∂f

∂Y ′
∂Y ′

∂α
+

∂f

∂x

∂x

∂α
, (3)
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and since x ̸= x(α), ∂αx = 0. Using the expression for Y (x), we then compute

∂f

∂α
= η(x)

∂f

∂Y
+ η′(x)

∂f

∂Y ′ . (4)

since ∂α
(
y(x) + αη(x)

)
= η(x) and ∂α

(
y′(x) + αη′(x)

)
= η′(x).

To minimize Eq. (1) for Y (x), we must now take

∂S

∂α
=

∂

∂α

∫ x2

x1

f
[
Y (x), Y ′(x), x

]
dx = 0 (5)

using our derived expression for ∂αf . Doing this, we find:

∂S

∂α
=

∫ x2

x1

∂f(Y, Y ′, x)

∂α
dx =

∫ x2

x1

η(x)
∂f

∂y
+ η′(x)

∂f

∂y′
dx = 0. (6)

We now rewrite the second term in this integral using integration by parts
where u = ∂αf and dv = η′dx. Applying this:∫ x2

x1

η′(x)
∂f

∂y′
dx = η(x)

∂f

∂y′

∣∣∣∣∣
x2

x1

−
∫ x2

x1

η(x)
d

dx

∂f

∂y′
dx. (7)

Because there is no difference between y(x) and Y (x) at the endpoints (x1, y1)
and (x2, y2), this requires that η(x1) = η(x2) = 0, meaning∫ x2

x1

η′(x)
∂f

∂y′
dx = −

∫ x2

x1

η(x)
d

dx

∂f

∂y′
dx. (8)

We now use this expression in Eq. (6) to find

∂S

∂α
=

∫ x2

x1

∂f(Y, Y ′, x)

∂α
dx =

∫ x2

x1

η(x)
∂f

∂y
− η(x)

d

dx

∂f

∂y′
dx = 0

=⇒ ∂S

∂α
=

∫ x2

x1

η(x)

(
∂f

∂y
− d

dx

∂f

∂y′

)
dx = 0.

(9)

Since this must be fulfilled for any function η(x), we can say

∂f

∂y
− d

dx

∂f

∂y′
= 0 (10)

Eq. (10) is called the Euler-Lagrange Equation.

2 Lagrange’s Equations for Unconstrained Mo-
tion

Goal: Write equations of motion in a framework that take the same form in
any coordinate system and eliminates dependence on forces of constraint, such
as the normal force, whose form are often not known exactly.
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With the divine knowledge that such an approach will provide exactly what
we’re looking for, we define the following quantity:

L := T − U, (11)

called the Lagrangian. We let T = T (ẋ, ẏ, ż) since T = 1
2mṙ and assume

U = U(x, y, z) comes from a conservative force. We then discover that with
such a definition,

∂L
∂x

=
∂U

∂x
(12)

since only U depends on x, and then we use the definition of a conservative
force to conclude that

∂L
∂x

= −∂U

∂x
= Fx. (13)

It should be clear that this works for all Cartesian coordinates x, y, z.
Again using our definition of Eq. (11), we similarly discover

∂L
∂ẋ

= mẋ ≡ px, (14)

so if we then differentiate this expression with respect to time, we recover the
definition of force:

d

dt

∂L
∂ẋ

= mẍ ≡ ṗx := Fx. (15)

Since Eq. (13) and Eq. (15) both define Fx, setting them equal to each other
recovers the Euler-Lagrange equation for x of the previous section:

d

dt

∂L
∂ẋ

=
∂L
∂x

, (16)

which is called Lagrange’s equation. It should again be clear that this argu-
ment works for all Cartesian coordinates x, y, z.

To remove the dependence of this method on Cartesian coordinates, we de-
fine the generalized coordinates qi to specify a unique value of r = (x, y, z), r =
(r, θ, ϕ), or any given coordinate system:

qi = qi(r) for i = 1, 2, 3. (17)

In this way, we have
r = r(q1, q2, q3), (18)

and we make the same definitions for the time derivatives of these quantities:

q̇i = q̇i(v) for i = 1, 2, 3. (19)

We can then write the Euler-Lagrange equations for our generalized coordinates
(qi, q̇i) using the same argument we previously made for x, which results in the
generalized form of Lagrange’s equations:

d

dt

∂L
∂q̇i

=
∂L
∂qi

. (20)
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3 Proof of Euler-Lagrange Equation for System
with Constraints

Goal: Prove that the Euler-Lagrange equation holds for a system experiencing
constraint forces; such as a normal force or tension force. To make a more exact
description of our goal, we wish to derive the Euler-Lagrange equation for a
holonomic system; one where the number of degrees of freedom equals the
number of generalized coordinates needed to describe the system.

To do this, we consider a system that is experiencing non-conservative con-
straint forces, F cstr, and regular non-constraint forces F that are conservative,
such as the gravitational and spring force. Because our non-constraint forces
are conservative, we can write them as being derived from a potential energy;
F = −∇U(r, t).

Similar to the first section, we consider any two points (r1, t1) and (r2, t2)
and define r(t) to be the path actually realized in nature and R(t) to be any
other paths that deviate from our physical path by some parameter ϵ(t), which
is now a vector since we are now considering a multi-dimensional system. As
before, we write

R(t) = r(t) + ϵ(t) (21)

where ϵ(t1) = ϵ(t2) = 0 since we have fixed the initial and final positions of our
path (we by definition cannot have any deviations at our fixed points).

We then define the action integral for the general R(t) path as

S =

∫ t2

t1

L(R, Ṙ, t)dt (22)

and define the action for the physical path as

S0 =

∫ t2

t1

L(r, ṙ, t)dt. (23)

We can then define the difference δ between these two actions by

δS = S − S0, (24)

so if we show that δS = 0 to first order in ϵ, this tells us that for the general
action S, the physical path taken will be where R(t) = r(t). To derive the
Euler-Lagrange equations for unconstrained motion, we must first show that
δS = 0 to first order in ϵ.

First, the difference δ in the action is the integral difference in the La-
grangians on the two paths r(t) and bR(t):

δL = L(R, Ṙ, t)− L(r, ṙ, t). (25)

Using our definition of R(t) from Eq. (21), we have

δL = L(r + ϵ, ṙ + ϵ̇, t)− L(r, ṙ, t). (26)
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Because we defined the non-constraint forces on the system to be derivable from
a potential energy, we can then rewrite each Lagrangian:

L(r, ṙ, t) = T − U =
1

2
mṙ2 − U(r, t) (27)

and

L(r + ϵ, ṙ + ϵ̇, t) = T − U =
1

2
m(ṙ + ϵ̇)2 − U(r + ϵ, t). (28)

Substituting these expressions into our difference δL gives us:

δL =
1

2
m

[
(ṙ + ϵ̇)2 − ṙ2

]
−
[
U(r + ϵ, t)− U(r, t)

]
. (29)

Expanding and simplifying our potential energy term leads to

δL =
1

2
m

[
2ṙ · ϵ̇+ ϵ̇2

]
−

[
U(r + ϵ, t)− U(r, t)

]
, (30)

and we then drop the ϵ̇2 term since we are only considering the difference in
actions to first order in ϵ.

We then use the generic approximation for a gradient of a scalar function

∇f ≈ f(r + ϵ)− f(r)

ϵ
(31)

to state that
δL = mṙ · ϵ̇− ϵ · ∇U. (32)

Substituting this into our expression for the difference in action δS, we have

δS = −
∫ t2

t1

mṙ · ϵ̇− ϵ · ∇U. (33)

We then simplify the mṙ · ϵ̇ term using integration of parts:∫ t2

t1

mṙ · ϵ̇dt = mṙ · ϵ
∣∣∣∣t2
t1

−m

∫ t2

t1

r̈ · ϵdt = −m

∫ t2

t1

r̈ · ϵdt (34)

where we have used the fact that ϵ(t1) = ϵ(t2) = 0.
Because mr̈ represents the total force experienced by the object traveling

along its physical path, and we have set our scenario up such that the object is
subject to both non-conservative constraint forces F cstr and conservative non-
constraint forces F ; F tot = F cstr +F = F cstr −∇U , we may now write our δS
as

δS = −
∫ t2

t1

mr̈ · ϵ− ϵ · ∇U = −
∫ t2

t1

ϵ · (F cstr −∇U)− ϵ · ∇Udt

= −
∫ t2

t1

ϵ · F cstrdt.

(35)
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Finally, because our constraint forces always act perpendicular to the direction
of an object (consider the direction that normal and tensional force point in),
we have that ϵ ⊥ F cstr, so we have arrived at the desired result that δS = 0.

Because we have shown that the action integral is stationary at the correct
path r(t) for a holonomic system, we have not proved that we can derive the
Euler-Lagrange equations for a system expressed in any coordinate system; we
have instead demonstrated that the Euler-Lagrange equations can be derived
from an action for a system expressed in terms of its generalized coordinates qi
and q̇i, which take the constraints acting on a system into account.

4 Applications of the Euler-Lagrange Equations

Example 1: Find the equations of motion for a pendulum attached to the
ceiling of an accelerating car using the Euler-Lagrange equations.

ℓ
ϕ

xs =
1
2at

2

a

Figure 2: A figure of the scenario for Example 1.

To derive the equations of motion for this pendulum, we must first determine
the Lagrangian for it. We first consider the kinetic energy term T .

Because ṙ2 ⊥⊥ ẋ, ẏ by ṙ2 = ẋ2+ ẏ2, we must find the vx and vy components.
For the vx component, we have a contribution from the pendulum ẋp and the

acceleration ẋc of the car. Because xp = ℓ sinϕ =⇒ ẋp = ℓ cosϕϕ̇ and because

xc = 1
2at

2 =⇒ ẋc = at. Combining these, we have ẋ = ℓ cosϕϕ̇ + at. The
y-component of the pendulum’s velocity is only dependent on the pendulum’s
motion, so we have that y = ℓ cosϕ =⇒ ẏ = −ℓ sinϕϕ̇. We then have the
following expression for ṙ2:

ṙ2 = ẋ2 + ẏ2 = (ℓ cosϕϕ̇+ at)2 + (ℓ sinϕϕ̇)2. (36)

Expanding this in our expression for T :

T =
1

2

(
ℓ2ϕ̇2 + 2ℓat cosϕϕ̇+ (at)2

)
. (37)

Since out potential energy is of the form V = −mgℓ cosϕ, the full Lagrangian
for our system is

L(ϕ, ϕ̇, t) = 1

2

(
ℓ2ϕ̇2 + 2ℓat cosϕϕ̇+ (at)2

)
+mgℓ cosϕ, (38)
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which we now will apply the Euler-Lagrange equation

d

dt

∂L
∂ϕ̇

− ∂L
∂ϕ

= 0 (39)

to so that was can derive the ball’s equation of motion.
First computing the ∂ϕL term:

∂L
∂ϕ

=
∂

∂ϕ

(
mℓat cosϕϕ̇+mgℓ cosϕ

)
= −mℓatϕ̇ sinϕ−mgℓ sinϕ.

(40)

Then the ∂ϕ̇L term:

∂L
∂ϕ̇

=
∂

∂ϕ̇

(
1

2
mℓ2ϕ̇2 +matℓ cosϕϕ̇

)
= mℓ2ϕ̇−matℓ cosϕ

(41)

so we have that

d

dt

∂L
∂ϕ̇

= mℓ2ϕ̈−maℓ cosϕ−matℓ sinϕϕ̇ (42)

by the product rule.
Combining our expressions for ∂ϕL and d

dt∂ϕ̇L for the Euler-Lagrange equa-
tion, we have that

mℓ2ϕ̈−maℓ cosϕ−matℓ sinϕϕ̇ = −mℓatϕ̇ sinϕ−mgℓ sinϕ

=⇒ mℓ2ϕ̈−maℓ cosϕ = −mgℓ sinϕ

=⇒ ϕ̈ =
a

ℓ
cosϕ− g

ℓ
sinϕ.

(43)

Notice that when a = 0, we recover the familiar equation of motion for simple
harmonic motion.

5 Two Body System Equations of Motion

When the center of mass between two objects is defined;

R =
m1r1 +m2r2

M
, (44)

one can write the Lagrangian of the system as

L =
1

2
MṘ

2
+

1

2
µr2 − U(r) (45)

by additionally defining r := r1 − r2 and the reduced mass as

µ =
m1m2

m1 +m2
. (46)
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Notice that L has one term that depends on the center of mass position R and
two terms that depend on the relative position of the two objects r. This means
we can separate our Lagrangian into two separate components

L = Lcm + Lrel (47)

If we wish to find the equations of motion for this system and physically
understand what each of them tell us, we can use this allowed Lagrangian split,
and solve the equations of motion for each component. To proceed, we first
determine the equations of motion for the center of mass frame component to
our full system’s Lagrangian, Lcm.

Because LCM is independent of R, we know that MṘ = C from the Euler-
Lagrange equations, which is a consequence of the conservation of angular mo-
mentum.

Moving to the Lrel component of our Lagrangian split, we find

µr̈ = −∇U(r) (48)

after applying the Euler-Lagrange equations to our relative position variable r
and its velocity ṙ.

When analyzing the angular momentum of this system, Taylor goes on to
show that

L = r × µṙ. (49)

Because angular momentum is conserved in this system, L̇ = 0, which implies
that r×ṙ is a constant, which then implies that the direction of r×ṙ is constant;
so that the two-body system stays fixed on a plane in the center of mass frame.

Because our system in the center of mass frame stays fixed to a plane, it is
natural to think of their relative position as being written in polar coordinates,
where

ṙ = ṙr̂ + rϕ̇ϕ̂. (50)

In polar coordinates, our Lagrangian in the center of mass frame (which only
depends on r) is rewritten as

L =
1

2
µ(ṙ2 + r2ϕ̇2)− U(r). (51)

When we apply the Euler-Lagrange equations to the ϕ variable of this La-
grangian, we find

µr2ϕ̇ = C, (52)

and since ℓ⃗ := r⃗ ×mv⃗, we have that ℓ = C.
Now applying the Euler-Lagrange equation to the r variable, we find

µr̈ − µrϕ̇2 = −∂U

∂r
(53)
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where µr̈ is the familiar radial force experienced by the reduced mass and µrϕ̇2 is
the angular component of the force, F̂ϕ. To represent this in a more enlightening
form, we rearrange Eq. (52) to state

ϕ̇ =
ℓ

µr2
, (54)

which means we can rewrite Eq. (53) as

µr̈ = −∂U

∂r
+

ℓ2

µr3
=

∂U

∂r
+ Ff , (55)

which has the form of Newton’s second law in one dimension for a system with
mass µ and position r subject to a conservative force plus a “fictitious” force

Ff =
ℓ2

µr3
, (56)

which we can also express as being derivable from a fictitious potential energy
Uf (r):

Uf (r) =
ℓ2

2µr2
. (57)

Rewriting Eq. (55) in terms of this new fictitious potential energy, we have

µr̈ = − d

dr

(
U(r) + Uf (r)

)
, (58)

and we finally define the effective potential as

Ueff = U(r) + Uf (r) = U(r) +
ℓ2

2µr2
. (59)

Finally multiplying both sides of Eq. (58) by ṙ, we get

d

dt

(
1

2
µṙ2

)
= −dU

dt
=⇒ d

dt

(
1

2
µṙ2 − U(r)

)
= 0. (60)

If we recognize 1
2µṙ

2 as the kinetic energy of the reduced system and U(r) as
its potential energy, we have shown that the system’s total energy is conserved.
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