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Abstract

General relativity has been an immensely successful theory of gravity,
leading to the prediction and discovery of phenomena which has shaped
our modern understanding of the universe. General relativity does not ex-
ist without challenges, however, due to the existence of singularities that
are hypothesized to exist in the center of black holes and at the origin
of our universe, and due to challenges that face the theory’s cosmological
paradigm. In attempting to search for theories of gravity beyond general
relativity, writing proposed modified theories in the ADM formalism by
applying a 3+1 decomposition to them would allow for a more intuitive
understanding of the theories and may aid in their mathematical analy-
sis. In this work, I apply the 3+1 decomposition to Scalar-Tensor-Vector
Gravity (STVG), derive the theory’s resulting constraint equations, and
derive initial data conditions for the theory.
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1 Introduction

General relativity, discovered by Albert Einstein in 1915 [3], has been an incred-
ibly successful theory of gravity with far-reaching implications on the nature of
reality that are still in the process of being understood. Given its continued abil-
ity to stand up to experimental verification1, general relativity has become our
modern paradigm for understanding the nature of gravity, and revived interest
in formally approaching cosmological studies in the early twentieth century, a
field which is continuing to experience success.

As is the case with any successful scientific paradigm, however, anomalies
have begun to arise in theoretical and observational considerations of the theory.
The most significant of which, the existence of singularities at the center of black
holes and at the origin of the universe, seems to be so fundamental of a problem
that various programs of quantum gravity have attempted to either unify all
fundamental interactions of nature, as is done in the context of string theory,
or quantize the gravitational field, as is the case in loop quantum gravity. The
existence of singularities seems to be so fundamental to the theory of relativity
that one cannot hope to solve this anomaly within the confines of the theory.

Another fundamental problem arising from astrophysical observations that
conflict with the theoretical predictions made by general relativity is the pro-
posed existence of dark matter. Dark matter was first discovered in 1933 when
Fritz Zwicky noticed that the observed rate of rotation of stars around galaxies
did not fit the rate of rotation predicted by general relativity. It was discov-
ered that to account for this discrepancy, one needed to assume that galaxies
contained a much more even radial distribution of mass, which is a result that
cannot be predicted from the framework of general relativity.

Because the issue of dark matter arises from a conflict between astrophys-
ical observations and the predictions made by general relativity, dark matter
does not appear to be as fundamental of a problem to the theory of relativ-
ity as the existence of singularities is. As such, there has been development
in the direction of modifying the underlying theory of relativity to account for
the theoretical discrepancies with observation, which has been done with some
success2. Although it is currently more favorable to ascribe a particle-nature to
dark matter since proposed modified theories of gravity have not yet been able
to simultaneously explain all observational anomalies, it is still reasonable to
consider modified gravity as a possible explanation for at least some of these
anomalies.

To support the development of theories of modified gravity, sophisticated
analyses of a given theory’s fundamental equations are necessary. One common
method used to analyze any general four-dimensional theory is called 3+1 de-
composition , which separates the full four-dimensional theory into spatial and
temporal components. This method applied to general relativity has been espe-
cially useful in the development of relativistic simulations, such as the merging of

1For example, see [1, 9, 2, 8, 4]
2For example, see [6, 5]
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black holes and the system’s emission of gravitational waves3. One of the most
successful theories of modified gravity called scalar-tensor-vector (STVG)
gravity [7], commonly called MOdified Gravity (MOG), has not yet had this
decomposition applied to its fundamental equations that describe the evolution
of relativistic systems. To support the development of modified gravity as a
possible alternative to dark matter, I present the 3+1 decomposition as applied
to the equations of STVG.

To do this, I will first explain all of the relevant mathematics and general
relativity in the following section. I will then move on to describe the general
framework of 3+1 decomposition, and demonstrate how it is applied to the Ein-
stein field equations. I do not intend for these sections to be an introduction to
these topics, but they will provide essential definitions, basic explanations, and
references when details beyond the scope of this thesis are required. The curious
reader would use these sections as a guide to a more thorough understanding of
the topics. I then finish by applying 3+1 decomposition to the field equations
of SVTG and will derive the resulting constraint equations for the theory.

2 Differential Geometry and General Relativity

2.1 Notion of a Manifold

The framework of general relativity is written in the language of differential
geometry, so providing a short outline of its relevant elements is necessary. We
first define the topological space that general relativity is written on.

Definition 1. A manifold is a topological space M such that each point
p ∈ M has an open neighborhood U which is homeomorphic to an open subset
of a Euclidean space, Rn.

It is natural to formulate general relativity on manifolds because this space
allows us to define notions of distances, angles, and curvature. Manifolds also
provide the flexibility to describe the region near each point as flat, even when
the global topology is not necessarily flat, which is an assumption that, as we
will see, plays a crucial role in general relativity. A visualization of a manifold
is given in Fig. 1.

3Here is where I’ll cite foundational papers in NR. Maybe Frans Pretorius?

4



Figure 1: Space local to a point on a manifold will always appear Euclidean.

2.2 Vectors and Tensors on Manifolds

In special relativity, the globally flat geometry naturally defines a four-dimensional
vector space structure. When moving to more general topologies, however, this
vector space structure is lost. To retrieve these powerful tools in curved geome-
tries, we recover vectors on manifolds in the limit of infinitesimal displacements
about a point, which are called tangent vectors.

Definition 2. On a manifold M, let F denote the collection of continuously
differentiable functions from M into Rn. The tangent vector V at a point
p ∈ M is defined to be a map V : F → Rn which is (1) linear and (2) obeys
the Leibniz rule:

1. V (af + bg) = aV (f) + bV (g), for all f, g ∈ F , where a, b ∈ Rn;

2. V (fg) = f(p)V (g) + g(p)V (f).

The collection of vectors tangent to a point p ∈ M is the tangent space
Tp(M). The tangent space at a point on a general manifold is illustrated in Fig
2.

In Rn, vectors V = (V 1, . . . , V n) define the directional derivatives V µ (∂/∂xµ)
and vice versa4, so it is natural to express tangent spaces in terms of the set of
directional derivatives (∂µ).

4Note that we are using the Einstein summation convention throughout, where a re-
peated index denotes summation over all its possible values; V µ ∂

∂xµ ≡
∑

µ V µ ∂
∂xµ where

µ ∈ {t, x, y, z} in relativity.
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Figure 2: A vector V µ drawn in the tangent space Tp(M).

With tangent spaces allowing us to describe the set of all possible directions
one can move locally on a manifold, we now must introduce the tools for more
precisely describing how these directions are measured. We first define linear
forms.

Definition 3. A linear form at each point p ∈ M is the linear mapping ω
such that

ω : Tp(M) −→ R (1)

for all p ∈ Tp(M).

The set of linear forms at p constitutes its own vector space, which is called
the dual space of Tp(M), denoted by T ∗

p (M). Vectors defined in the dual
space are called contravariant.

Given the natural basis (∂µ) of Tp(M) associated with a set of coordinates
(xµ) on a manifold, there exists a unique basis for T ∗

p (M), denoted by (dxµ)
such that

⟨dxµ, ∂ν⟩ = δµν , (2)

where δµν , called the Kroceker-delta, is defined as δµν = 0 when ν ̸= µ and δµν = 1
when ν = µ. This basis (dxµ) is called the dual basis of (∂µ). Note that the
natural bases are not the only possible choice in the vector space Tp(M). One
could use a general basis (eµ) that is not related to any coordinate system on
M. Given (eµ), there then exists unique dual bases (eµ) ∈ T ∗(M) such that

⟨eµ, eν⟩ = δµν . (3)

A smooth assignment of linear forms to each tangent space at points on a
manifold is called a 1-form. Given a smooth scalar field f on M, the canonical
1-form associated with it is the gradient of f , defined as

∇f =
∂f

∂xµ
dxµ. (4)
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With our definitions of tangent spaces and linear forms, we are now ready to
define the objects that will be fundamental to general relativity, tensors, which
are a generalization of vectors and linear forms.

Definition 4. At a point p ∈ M, a tensor of type (k, ℓ) with (k, ℓ) ∈ N2 is a
mapping

T : T ∗
p (M)× · · · × T ∗

p (M)︸ ︷︷ ︸
k times

×Tp(M)× · · · × Tp(M)︸ ︷︷ ︸
ℓ times

−→ R (5)

that is linear with respect to each of its arguments. The natural number k + ℓ
is called the rank of the tensor.

Given a basis (eµ) of Tp(M) and the corresponding dual basis (eµ) ∈ T ∗
p (M),

we can expand any tensor T of type (k, ℓ) as

T = T µ1...µk
ν1...νℓ

eµ1
⊗ · · · ⊗ eµk

⊗ eν1 ⊗ · · · ⊗ eνℓ . (6)

where the ⊗ operation is the tensor product, with components XµV ν for vectors
X and Y .

With tangent spaces and general tensors defined, we can now move on to the
key structure of a manifold, the metric g, which is a (0,2) tensor that allows
one to define distances and angles on a given manifold. A metric acts on vectors
in the tangent space Tp(M) by

g : Tp(M)× Tp(M) −→ R, (7)

is symmetric; g(u, v) = v, u, and is non-degenerate; there exists a non-zero
v ∈ Tp(M) such that g(u,v) = 0 for all u ∈ Tp(M).

In a given basis (eµ) of Tp(M), the components of g is the matrix gµν defined
by the expression for a general tensor given in Eq. (5) with (k, ℓ) = (0, 2):

g = gµνe
µ ⊗ eν . (8)

For any vectors u and v, we then have that

g(u,v) = gµνu
µvν . (9)

2.3 Connections on Manifolds and Curvature

(Levi-Civita connection, covariant derivatives, and curvature)
In relativity and related theories, the space of physical events is represented

by a Lorentzian manifold M. Unlike a Riemannian manifold, which requires the
metric to be positive definite, a Lorentzian manifold allows the metric to have
an indefinite signature, meaning inner products can be positive, negative, or
zero. This feature preserves the causal structure of spacetime by distinguishing
between timelike, spacelike, and lightlike intervals5. Additionally, a Lorentzian

5See Appendix B for an explanation of causality in relativity.
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manifold has a tangent space at each point that is locally homeomorphic to flat
spacetime, described by the Minkowski metric ηµν . The tangent space represents
the set of possible directions for movement tangential to a point, allowing the
definition of differential objects like gradients on the manifold. The local flatness
of the Lorentzian manifold at each point ensures that, on small scales, spacetime
appears flat, preserving the validity of special relativity locally.

The manifold is endowed with a metric gµν , which smoothly assigns a value
to each point p onM. This smoothness is crucial for ensuring the continuity and
differentiability of the manifold. The metric allows the calculation of lengths
and angles on TpM, the tangent space at each point. The metric gµν encodes
the local geometry of the manifold near a point.

The tangent space at a point provides a way to approximate the manifold
by flat spacetime at that point. Specifically, at any point p on the manifold, the
tangent space TpM locally resembles flat spacetime:

(M, gµν)
Tp(M)−−−−→ (R1,n, ηµν). (10)

Every Lorentzian manifold comes with a Levi-Civita connection, which is
a specific type of affine connection that is associated with a Lorentzian manifold.
An affine connection is a geometrical object that connects tangent spaces at
points on a manifold so that derivatives can be taken on the manifold.

Figure 3: The affine connection from point p to q on a spherical manifold. The
tangent spaces and a vector in them for each point are also shown.

This affine connection (just referred to as connection) is used to define the
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covariant derivative of a vector V µ, defined as

∇νV
µ = ∂νV

µ + Γµ
νλV

λ (11)

where the ∂νV
µ term captures how the vector itself changes from p to q (as

usual) and the Γµ
νλV

λ term, called Christoffel symbols, captures how the
shape of the manifold (V µ’s basis vectors) changes along the path. The Christof-
fel symbols are the coefficients of the connection. Since the Christoffel symbols
capture how the manifold changes from one point to another, it shouldn’t be
surprising that their definition contains first derivatives of the metric;

.Γµ
νλ =

1

2
gσµ

(
∂gσν
∂xλ

+
∂gσλ
∂xν

+
∂gνλ
∂xσ

)
. (12)

In a flat spacetime, the metric would never change from one point to another,
meaning Γµ

νλV
λ = 0, which means our covariant derivative would become

∇νV
µ = ∂νV

µ, (13)

which is the regular definition of the gradient operator (so the covariant deriva-
tive is just the generalization of the gradient operator to curved spacetimes).
If the covariant derivative of a vector along a path is zero, this means that the
vector has not changed its orientation over the path. In this case, we say it has
been parallel transported across the manifold.

Note that the shortest path on a manifold, called its geodesic, is described
by the geodesic equation:

d2xµ

dτ2
+ Γµ

νλ

dxν

dτ

dxλ

dτ
= 0 (14)

where the xµ terms are the coordinates on the manifold and τ is the proper
time; the time measured by the observer moving along the geodesic.

To measure the curvature of the manifold, we must know how the metric,
which, again, describes how the geometry near a point changes, itself changes
over the manifold. Specifically, we must know how the geometry near each
point changes and how these changes vary from point to point. The curvature
of the manifold, which encapsulates how the manifold deviates from flatness, is
described by the Riemann curvature tensor, defined as

Rλ
σµν = ∂µΓ

λ
σµ − ∂νΓ

λ
σµ + Γλ

ρµΓ
ρ
σν − Γλ

ρνΓ
ρ
σµ. (15)

With the Riemann tensor, we define another tensorial object of two lower
rank by contracting (summing over the indices of) the Riemann tensor:

Rµν := Rλ
µλν . (16)

This new quantity, called the Ricci tensor, still contains information about
the curvature of your manifold from the Riemann tensor but now in a more
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compact form. The Ricci tensor therefore also describes curvature of a manifold
but in a more compact form.

We then define another quantity, called the Ricci scalar (or often referred
to as the scalar curvature), as the trace of the Ricci tensor with respect to the
inverse metric:

R := gµνRµν . (17)

Since the metric defines the geometry of your manifold near a point and the
Ricci tensor is a compact measure for the curvature of the manifold, this Ricci
scalar describes the average curvature at a point. It should be no surprise
that a measure for the average curvature at a point depends on some notion for
what the curvature of a manifold looks like and what the geometry around a
single point looks like.

(Link to general relativity by covering semi-Riemannian geometry
and the Einstein field equations)

(formally define a spacetime)

2.4 Definition of Spacetime

2.5 Einstein Field Equations

(derive the EFEs from varying the action)
The Einstein field equations are defined as

Rµν − 1

2
Rgµν =

8πG

c4
Tµν . (18)

3 Geometry of Hypersurfaces

4 3+1 Decomposition

4.1 Defining lapse function and shift vector

We wish to develop a general method for slicing a spacetime manifold M into
spatial hypersurfaces so that their evolution can be tracked over a coordinate
time t. We first imagine creating two slices, Σt and Σt+dt and define the normal
vector to any surface as

nµ = −α∇µt (19)

where α is added as a normalization constant, t is added to correctly order
the hypersurfaces in time, ∇µ is the covariant derivative, added because the
normal vector to a plane will be the partial derivatives of the vector or function
describing the plane (need better reasoning here), and the negative sign is
introduced since we are using the metric signature (−,+,+,+). This means we
have

nµ = (−α, 0, 0, 0) (20)
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and the dot product of the normal vector with itself is

nµn
µ ≡ gµνnµnν = −1. (21)

With two hypersurfaces, Σt and Σt+dt, we would first like to know how the
change in coordinate time corresponds to a change in proper time for an observer
on the surfaces. (again, really need image here) The proper time separation will
be nµdτ and we want to know how this is related to dt. To do this, we take the
dot product of the separation vector nµdτ and the gradient of coordinate time
(describing the rate of change of coordinate time along the direction of nµdτ):

dt = (∇µt)(n
µdτ). (22)

Using Eq. (19), we have

dt =
(
−nµ

α

)
(nµdτ) =

dτ

α
=⇒ αdt = dτ . (23)

So we have learned that the normalization constant α of the normal vectors tells
us how much proper time τ (measured by an observer on these hypersurfaces)
changes as coordinate time advances between the hypersurfaces. For this reason,
α is called a lapse function.

We would similarly like to know how spatial coordinates change for an ob-
server on the hypersurface as coordinate time advances. First note that we
can introduce a factor βi into the definition of nµ’s spatial components without
alerting our normalization condition nµnµ = −1 (I don’t understand this at
all) so we can say

nµ =
1

α
(−1, βi) . (24)

To determine how a change in coordinate time corresponds to a change in spatial
coordinates on the hypersurface, we again play the same game of taking the dot
product of the change in the spatial separation vector ∇µx

i along the change in
the observer’s proper time vector nµdτ (again remember that nµ gives direction
to the change in proper time dτ). This results in

dxi = (∇µx
i)(nµdτ) (25)

and we can say that ∇µx
i = ∂µx

i since xi are just coordinates (I don’t un-
derstand why the Christoffel symbols vanish...). We can then say that
∂µx

i = δiµ (since ∂yx = 0 but ∂xx = 1), leaving us with

dxi = δiµn
µdτ = nidτ =

βi

α
dτ (26)

then using Eq. (23), we have

dxi =
βi

α
αdt =⇒ dxi = βidτ . (27)
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β therefore measures the rate at which a normal observer would notice the
spatial coordinates change (if an observer at Σt could see the hypersurface and
all of its coordinates evolve to Σt+dt, they would see a spacetime difference of
(t+ dt, xi − βidt) ... shaky on this... not totally clear. Not clear on the
next part either). This is why β is called the shift vector. We can then
define a time vector according to a coordinate observer (one outside of M... the
person evolving the simulation) as

tµ = αnµ + βµ = (1, 0, 0, 0) (28)

4.2 Decomposing tensors

We now wish to split tensors into spatial and temporal components. Given a
vector Aµ, we want to decompose it into a component aligned with the normal
vector (along the direction of proper time flow) and components that are aligned
with the spatial slices. We can always decompose a tensor into components that
are parallel and perpendicular to nµ:

Aµ = Aµ
⊥ +Aµ

∥ (29)

where Aµ
⊥ would be the normal component and Aµ

∥ would be aligned with the

spatial slice. First define the magnitude of the vector parallel to nµ as

ϕ := −nνA
ν (30)

(negative sign added because nν is timelike, so for future-pointing vectors, nν

will be positive). Because the parallel component of Aµ will point in the same
direction as nµ, we have that

Aµ
∥ = ϕnµ = (−nνA

ν)nµ = −nνn
µAν . (31)

Now to compute Aµ
⊥, we rearrange the definition given in Eq. (29) and apply

what we have found in Eq. (31):

Aµ
⊥ = Aµ −Aµ

⊥ = Aµ + nνn
µAν (32)

and use the trick Aµ = δµνA
ν so we have

Aµ
⊥ = δµνA

ν + nνn
µAν = (δµν + nνn

µ)Aν . (33)

We have therefore found that, given a spacetime vector Aν , the operator δµν +
nνn

µ will return only the components of Aν that are aligned with the spatial
slices. For this reason, we define a projection operator γµ

ν as

γµ
ν := δµν + nνn

µ. (34)

As an informative example, we will decompose a rank 2 tensor into its spatial
and normal components using the method developed above. The object we

12



would like to get spatial projections of is ∇µnν ; how the normal vectors change
with respect to each direction.

Motivated by our previous derivation, we will use a similar trick by letting

∇µnν = δλµδ
σ
λ∇λnσ (35)

and we rearrange Eq. (34) as δβα = γβ
α − nαn

β , leaving us with

∇µnν = (γλ
µ − nµn

λ)(γσ
ν − nνn

σ)∇λnσ (36)

and you can multiply this out to get an idea of what each component will
mean individually. In Thomas Baumgarte’s lecture, he eventually defines an
acceleration from one of these terms. I will skip this now but may come back
to finish it with textbooks.

The following definition is made from one of the terms in the previous ex-
pression:

Kµν := −γλ
µγ

σ
ν∇λnσ . (37)

This is called the extrinsic curvature: it is the spatial projection of the gra-
dient of the normal vector (how the normal vector changes along multiple di-
rections). This captures how each slice Σt is curved in its embedding within the
manifold M. (So I think intrinsic curvature will be captured by a projection of
the metric along all points of the manifold and this extrinsic curvature is how
curved the borders of Σt along M are).

As you would expect, the spatial covariant derivative of a spatial vector Aµ
⊥

is taken by spatially-projecting the derivative

DµA
ν
⊥ := γλ

µγ
ν
σ∇λA

µ
⊥. (38)

If you want to take spatial covariant derivatives of a spacetime vector, the
following operation is used:

DµA
ν
⊥ = γλ

µγ
ν
σ∇λA

µ
⊥. (39)

This covariant derivative would return zero if the vector was parallel transported
(meaning if was moved along the curve without changing its direction relative
to that curve), meaning ∇µA

ν = 0 in 4D and DµA
ν
⊥ = 0 on the spatial slices.

Lie Derivative: I don’t know where its form comes from (how it’s derived)
but it tells you what part of changes to the input tensor are not due to simple
coordinate transformations after it is dragged along some curve.

Contracted Biancchi identity:

∇µG
µν = 0 (40)

(divergence of Einstein tensor is zero). Using the field equations, this also tells
us that

∇µT
µν = 0, (41)

which is the conservation of energy.
Recipe for decomposing a theory into its spatial and normal (tem-

poral) components:
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1. Decompose the theory’s variables

(a) In GR, the fundamental quantity is the metric so we must reduce gµν
into a component which only contains information about spatial cur-
vature and another component that only contains information about
time in the theory

2. Decompose the equations (which will give you constraints on the theory’s
quantities (like momentum and energy)

(a) In GR, this is the action of decomposing the EFEs

4.3 Decomposing the metric

To decompose the metric, use the same trick as before where we say

gµν = δλµδ
σ
ν gλσ (42)

and
δµν = γµ

ν − nνn
µ (43)

so we have

gµν = (γµn
λ − nλ

µ)(γ
σ
ν − nνn

σ)gλσ

= γλ
µγ

σ
ν gλσ − γµn

λnνn
σgλσ − γσ

ν n
λ
µgλσ + nµn

λnνn
σgλσ

(44)

and
γλ
µnνn

σgλσ = γλ
νnµnσ (45)

and since γλ
ν describes a spatial slice while the n-vectors describe vectors normal

to those spatial slices, there will be no components that the two variables can
project onto eachother, so the whole sum goes to zero. This is true for both
cross-terms in the previous expansion, leaving us with

gµν = γλ
µγ

σ
ν gλσ + nµn

λnνn
σgλσ

= γλ
µγνλ + nµn

λnνnλ

= γµν − nµnν

=⇒ γµν = gµν + nµnν

(46)

where γµν is defined as the induced spatial metric; given a full spacetime metric
gµν , one uses Eq. (46) to derive a purely spatial metric on a hypersurface Σt.

We can now use this spatial metric to raise and lower indices just as the full
spacetime metric can. Given a vector βν ,

βµ = gµνβ
ν = (γµν − nµnν)β

ν (47)

and if βν is fully spatial, nµnνβ
ν = 0 since they are always orthogonal, meaning

βµ = γµνβ
ν . (48)
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Additionally, since we found
nµβ

µ = 0 (49)

and said previously that nµ = (−α, 0, 0, 0) (since the normal vectors only point
in the direction of forward time), the only non-zero component we have is

ntβ
t = −αβt = 0 =⇒ βt = 0, (50)

which tells us that any contravariant spatial vector like βµ must have vanishing normal components.
Note that it could be the case that covariant spatial vectors have normal com-
ponents since

nµβµ = ntβt + niβi = 0. (51)

This equality must hold but it does not prevent the scenario where ntβt = −niβi.
We then write

gµν = γµν − nµnν

=

(
ntnt ntni

nint ninj

)
=

(
α−2 −βiα−2

−βiα−2 −α−2γijβiβj

)
(52)

using the fact that nµ = 1
α (−1, βi). We then invert this matrix to find (I’m

trusting the computation done in the lecture here... haven’t done it myself):

gµν =

(
−α2 + βjβ

j βi

βi γij

)
. (53)

We can then define the spacetime interval with the decomposed metric:

ds2 = gµνdx
µdxν

= (−α2 + βjβ
j)dt2 + βidtdx

i + βidx
idt+ γijdx

idxj

= −α2dt2 + γijβ
iβjdt2 + 2γijβjdtdx

i + γijdx
idxj

= −α2dt2 + γij(dx
i + βidt)(dxj + βjdt).

(54)

So we have successfully decomposed the metric into spatial and normal compo-
nents, with the induced spatial metric γµν being derived from a given spacetime
metric gµν .

Example 5 (Writing γij for Schwarzschild Metric in Isotropic Coordinates).
Consider the Schwarzschild line element in isotropic coordinates

ds2 =

(
1− M

2r

1− M
2r

)2

dt2 +

(
1 +

M

2r

)4

(dr2 + r2dΩ). (55)

To decompose this metric, since there are no cross-terms (dtdxi), we have that
β = 0 and we have that

α =

(
1− M

2r

1− M
2r

)
(56)

and

γij =

(
1 +

M

2r

)4

ηij (57)

by inspection.
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5 Decomposing the field equations

Step 2 of decomposing a theory: decomposing the equations. This is what is
done below:

We must first decompose the variables that show up in the field equations
(Riemann tensor, Ricci tensor, Ricci scalar). NOTE: This is the derivation-
heavy part and I’m skipping all of the details right now (which are important
for my purposes and I will eventually go over them). This part will mainly be
repreating the results and explaining the steps for applying the decomposition
to the Einstein field equations.

First we define the Lie derivative along a normal vector of the spatial metric
to be

Lnγµν = nλ∇λγµν + γλν∇µn
λ + γµλ∇λn

λ (58)

and this somehow (don’t understand how yet) leads to

Lnγij = −2Kij . (59)

We also have the pure time derivative of the spatial metric

∂tγij = 2− αKij +
(3)∇iβj +

(3)∇jβi (60)

where (3)∇i is the purely spatial covariant derivative, defined as

(3)∇iV
j = ∂iV

j + V k (3)Γj
ki (61)

where (3)Γj
ki are the purely spatial Christoffel symbols, defined exactly as before

in Eq. (12) with gµν being replaced by Γij in the expression.
With the three-dimensional Christoffel symbols defined, we can proceed ex-

actly as before when working with the full metric by first defining a purely
spatial (three dimensional) Riemann curvature tensor. There are three unique
ways to express the spatial Riemann curvature tensor, though, since we can now
decompose the full four-dimensional object

1. Twice along the spatial dimensions

2. Twice along the normal direction (flow of coordinate time)

3. Once along the spatial dimensions and once along the normal direction

and each of these three decompositions of the four dimensional Riemann tensor
will result in three different expressions, each of which will introduce constraint
equations on the spatial hypersurfaces when they are used in the field equa-
tions. There are only three unique ways to decompose Rµνλσ because if we
decomposed twice along the spatial dimensions and once along the normal di-
rection, you would always get zero.

Again, I’m only showing results here. I will need to work the derivations out
for myself once I have the books. From this process, we get:

16



1. Purely spatial decompositions result in:

γµ
i γ

ν
j γ

λ
kγ

σ
l Rµνλσ = (3)Rijkl +KijKjl −KilKjk. (62)

This is called Gauss’ equation

2. purely normal decompositions result in:

γµ
i γ

ν
j n

λnσRµνλσ = LnKij +
1

α
(3)∇i

(3)∇jα+Kk
i Kkj . (63)

This is called Ricci’s equation. Notice that the left side only contains
derivatives along the normal direction. there is something wrong with
the indices here. figure it out once the books come

3. Normal-spatial decomposition:

γµ
j γ

ν
j γ

λ
kn

σRµνλσ = (3)∇jKik − (3)∇iKjk (64)

These are called the Codazzi-Mainardi equations

Now with these equations, we have projections of the Riemann curvature tensor
and now can build the Ricci tensor and Ricci scalar out of it by contracting each
of the three expressions’ indices twice (again, work this out once you have
the books).

After this is done, you have successfully decomposed all of the variables that
show up in the field equations so you are set to fully decompose them. Since
there are three unique ways to decompose the fundamental quantity, Rµνλσ, you
will have three unique field equations, each of which will result in a constraint
on your variables. Carrying out this process results in:

1. Spatial-spatial:

∂tKij − α(Rij − 2KikK
k
j +KKij) =

(3)∇i
(3)∇jα− 4πMij + LβKij

(65)
where Mij are the matter terms, defined as

Mij := 2Sij − γij(S − ρ) (66)

(see below for the definition of ρ) where we define

Sij := γµ
i γ

ν
j Tµν , (67)

which is the stress observed by a normal observer (one living on the hy-
perplanes).

2. Normal-normal:
(3)R+K2 −KijK

ij = 16πρ (68)

This called the Hamiltonian constraint where

ρ := nµnνTµν (69)

and K2 is called the mean curvature, defined as K2 := (γijKij).
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3. Normal-spatial:
(3)∇i(K

ij − γijK) = 8πJ i (70)

These are called the momentum constraint, where

J i := −γiµnνTµν (71)

These three boxed equations along with our previous condition

∂tγij = −2αKij + Lβγij (72)

are called the ADM equations, which are the full reformulation of the Einstein
field equations in the 3+1 decomposition.

6 Geometry of Foliations

7 Scalar-Vector-Tensor-Gravity

Scalar-Vector-Tensor Gravity (SVTG) modifies the action for a gravitational
field by adding additional terms to the original action for general relativity,
SGR;

S = SGR + Sϕ + SS (73)

where Sϕ is the action of the massive vector field ϕµ, defined as

Sϕ = −
∫

d4x
√
−g

[
1

4
BµνBµν − V (ϕµ)

]
(74)

and SS is the action for the scalar fields G, µ, and ω, defined as

SS = −
∫

d4x
√
−g

[
1

G3

(
1

2
gµν∇µG∇νG− V (G)

)
+

1

G

(
1

2
gµν∇µω∇νω − V (ω)

)
+

1

µ2G

(
1

2
gµν∇µµ∇νµ− V (µ)

)]
.

(75)

With this modified action, we derive the field equations in SVTG (maybe
show the steps here), which are

Gµν +Qµν + Λgµν =
8πG

c4
T ′
µν (76)

where

Qµν =

(
∇α∇αgµνΘ−∇µ∇νΘ

)
G (77)

and T ′
µν is the modified stress-energy tensor, which depends on the ordinary

matter-momentum tensor of general relativity TGR
µν , the contribution of the ϕµ

field Tϕ
µν , and the scalar G,ω, µ contributions TS

µν :

T ′
µν = TGR

µν + Tϕ
µν + TS

µν . (78)
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Where

Tϕ
µν = ω

[
Bα

i Bjα − γij

(
1

4
BραBρα + V (ϕµ)

)
+ 2γµ

i γ
ν
j

∂V (ϕµ)

∂gµν

]
. (79)

For conciseness, we break the scalar field contributions into TS
µν = TG

µν + Tω
µν +

Tµ
µν , for the introduced G,ω, and ϕ fields. We will explicitly write out the TG

µν

term but note that the ω and µ terms take on the same form up to a factor of
some constants. Deriving it from the action given in Eq. (75), TG

µν becomes

TG
µν = − 1

G3

[
∇µG∇νG− 2

∂V (G)

∂gµν
− gµν

(
1

2
∇αG∇αG− V (G)

)]
. (80)

8 Deriving the ADM Formulation of SVTG

(explain that you need to compute 3 decompositions of each of SVTG’s
field equations)

First computing the full projection onto our spatial hypersurfaces Σt in
SVTG, we begin by carrying this out for the theory’s tensor field equation. To
do this, we note that SVTG’s tensor field equation, given in Eq. (76), only
adds a Qµν term and modifies the stress energy tensor, given in Eq. (78).
We must therefore additionally decompose both of these terms, which we carry
out using Eq. (cite the following when they’re officially written out:
γµ
i γ

ν
j gµν = γij and γµ

i ∇µ = Di):

γµ
i γ

ν
j Qµν = γµ

i γ
ν
j

(
∇α∇αgµνΘ−∇µ∇νΘ

)
G

=

(
∇α∇αγ

µ
i γ

ν
j gµνΘ− γµ

i ∇µγ
ν
j ∇νΘ

)
G

=

(
∇α∇αγijΘ−DiDjΘ

)
G.

(81)

We then compute the spatial-spatial projection of the modified stress-energy
tensor, beginning with the Tϕ

µν term:

γµ
i γ

ν
j T

ϕ
µν = ωγµ

i γ
ν
j

[
Bα

µBνα − gµν

(
1

4
BραBρα + V (ϕµ) + 2

∂V (ϕµ)

∂gµν

)]
= ω

[
Bα

i Bjα − γij

(
1

4
BραBρα + V (ϕµ)

)
+ 2γµ

i γ
ν
j

∂V (ϕµ)

∂gµν

]
.

(82)

We then project the scalar contributions to the stress-energy tensor. Since there
are three scalar fields G,µ, and ω added to SVTG, we must project each of them.
Thankfully, :

γµ
i γ

ν
j T

G
µν = − 1

G3

[
DiGDjG− 2γµ

i γ
ν
j

∂V (G)

∂gµν
− γij

(
1

2
∇αG∇αG−V (G)

)]
(83)
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We now move on to fully projecting the field equations of SVTG along
the normal direction. First projecting the added Qµν term of the tensor field
equations by making use of Eq. and Eq. (again, cite the following facts:)
nµnν = −1 and nµnµgµν = −1:

nµnνQµν = nµnν

(
∇α∇αgµνΘ−∇µ∇νΘ

)
G

= −
(
∇α∇αΘ+∇µn

µ∇νn
νΘ

)
G.

(84)

We must now take a look at what the ∇µn
µ terms turn out to be. To do this,

we compute

∇µn
µ = gµσ∇µnσ =

(
γµσ − nµnσ

)
∇µnσ = γµσ∇µnσ (85)

since nµ∇µ

(
nσnσ

)
= 0. To simplify our result to something more familiar, we

use the fact that K := −γµσ∇µnσ = ∇µn
µ (cite if you state earlier in

paper), which allows us to conclude that

nµnνQµν = −
(
∇α∇αΘ+K2Θ

)
G. (86)

Computing the normal-normal projections of the vector stress-energy tensor:

nµnνTϕ
µν = ω

[
nµnνBα

µBνα +
1

4
BραBρα + V (ϕµ) + 2

∂V (ϕµ)

∂gµν

]
(87)

Then computing the normal-normal projection of the scalar stress-energy ten-
sor, where we will again only write out the G contribution since the ω and µ
contributions will be of the same form:

nµnνTG
µν = − 1

G3

[
K2G2 − 2nµnν ∂V (G)

∂gµν
+

1

2
∇αG∇αG− V (G)

]
. (88)

We now move on to computing the mixed projection of the added Qµν term
in the SVTG tensor field equations. We compute:

γµ
i n

νQµν =

(
∇α∇αγ

µ
i n

νgµνΘ− γµ
i ∇µ∇νn

νΘ

)
G

=

(
∇α∇αγ

µ
i n

νgµνΘ+DiKΘ

)
G.

(89)

Further inspecting the γµ
i n

νgµν term:

γµ
i n

νgµν = γµ
i n

νγµν − γµ
i nµn

νnν = γµ
i nµ = ni = 0, (90)

which makes our mixed projection of Qµν :

γµ
i n

νQµν = DiK (91)
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since we had defined Θ = 1/G(x).
Computing the mixed projection of the vector stress-energy tensor:

γµ
i n

νTϕ
µν = ω

(
Bα

i n
νBνα + 2γµ

i n
ν ∂V (ϕµ)

∂gµν

)
. (92)

Computing the mixed projection of the scalar stress-energy tensor:

γµ
i n

νTG
µν =

1

G3

(
DiG

2K + 2γµ
i n

ν ∂V (G)

∂gµν

)
(93)
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A Differential Forms

This is Appendix A.

B Causality in Relativity

Give the formal definitions of casualitiy in relativity. Explain timelike, spacelike,
and lightlike intervals.
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