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Abstract

General relativity has been an immensely successful theory of gravity,
leading to the prediction and discovery of phenomena which has shaped
our modern understanding of the universe. General relativity does not
exist without challenges, however, due to the existence of singularities
that are hypothesized to exist in the center of black holes and at the
origin of our universe and challenges that face the theory’s cosmological
paradigm. In attempting to search for theories of gravity beyond general
relativity, writing proposed modified theories in the ADM formalism by
applying a 3+1 decomposition to them would allow for a more intuitive
understanding of the theories and may aid in their mathematical analysis.
In this work, the 3+1 decomposition is applied to the field equations of
Scalar-Tensor-Vector Gravity (STVG), writing the theory in the ADM
Formulation.
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1 Introduction

General relativity, discovered by Albert Einstein in 1915 [1], has been an incred-
ibly successful theory of gravity with far-reaching implications on the nature of
reality that are still in the process of being understood. Given its continued abil-
ity to stand up to experimental verification1, general relativity has become our
modern paradigm for understanding the nature of gravity, and revived interest
in formally approaching cosmological studies in the early twentieth century, a
field which is continuing to experience success.

As is the case with any successful scientific paradigm, however, anomalies
have begun to arise in theoretical and observational considerations of the theory.
The most significant of which, the existence of singularities at the center of black
holes and at the origin of the universe, seems to be so fundamental of a problem
that various programs of quantum gravity have attempted to either unify all
fundamental interactions of nature, as is done in the context of string theory,
or quantize the gravitational field, as is the case in loop quantum gravity. The
existence of singularities seems to be so fundamental to the theory of relativity
that one cannot hope to solve this anomaly within the confines of the theory.

Another fundamental problem arising from astrophysical observations that
conflict with the theoretical predictions made by general relativity is the pro-
posed existence of dark matter. Dark matter was first discovered in 1933 when
Fritz Zwicky noticed that the observed rate of rotation of stars around galax-
ies did not fit the rate of rotation predicted by general relativity. From his
and future observations of galactic rotation curves, it was determined that the
amount of observable matter in these galaxies was not enough to account for
these observed high speeds of rotation given the theoretical predictions made
by general relativity. From this discrepancy between observation and the pre-
dictions made by general relativity, combined with additional observations that
have come to challenge other predictions made by general relativity, physicists
began to determine that the addition of matter beyond the standard model of
particle physics would solve these discrepancies without sacrificing general rela-
tivity. Because this matter is theorized and is currently not observed to interact
with our standard model of particle physics, it is inherently directly observable
and is thus called dark matter.

Because the issue of dark matter arises from a conflict between astrophys-
ical observations and the predictions made by general relativity, dark matter
does not appear to be as fundamental of a problem to the theory of relativ-
ity as the existence of singularities is. As such, there has been development
in the direction of modifying the underlying theory of relativity to account for
the theoretical discrepancies with observation, which has been done with some
success2. Although it is currently more favorable to ascribe a particle-nature to
dark matter since proposed modified theories of gravity have not yet been able
to simultaneously explain all observational anomalies, it is still reasonable to

1For example, see [2, 3, 4, 5, 6]
2For example, see [7, 8]
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consider modified gravity as a possible explanation for at least some of these
anomalies.

To support the development of theories of modified gravity, sophisticated
analyses of a given theory’s fundamental equations are necessary. One common
method used to analyze any general four-dimensional theory is called 3+1 de-
composition, which separates the full four-dimensional theory into spatial and
temporal components. This method applied to general relativity has been foun-
dational to developing simulations of relativistic systems, such as the merging of
black holes and the system’s emission of gravitational waves3. One of the most
successful theories of modified gravity, called Scalar-Tensor-Vector (STVG)
gravity [9], commonly called MOdified Gravity (MOG), has not yet had this
decomposition applied to its fundamental equations that describe the evolution
of relativistic systems. To support the development of modified gravity as a
possible alternative to dark matter, we will write the field equations STVG in
the ADM formalism, which is a Hamiltonian formulation of a theory of gravity,
named after the first to write general relativity in this way, Arowitt, Desner,
and Misner.

To write STVG in the ADM formalism, one needs to apply a method called
the 3+1 decomposition to its field equations, which allows the theory’s four-
dimensional variables to be separated into variables only describing the three-
dimensional spatial evolution of gravitational systems and the one-dimensional
temporal evolution of these spatial variables.

This thesis proceeds as follows: we will first quickly introduce the relevant
tools from the 3+1 decomposition necessary to write STVG in the ADM formal-
ism. Citations to sources with additional details, especially the more technically-
minded ones, will be provided throughout. We then demonstrate how general
relativity was first written in the ADM formalism, and we close by applying
the developed methods to our modified theory of gravity. For the reader inter-
ested in the mathematical foundations of general relativity and the necessary
differential geometry, a more rigorous treatment is given in Appendix A. Much
of the derivations needed to arrive at the material presented in Section 2.2 are
very long. All the bloody details for one of the derivations needed for the intro-
duction to the ADM formulation of general relativity are provided in Appendix
B. The rest of the details are filled in by cited sources, in particular [10].

2 Background Content

2.1 Tools from 3+1 Decomposition

Given a manifold M endowed with a metric gµν , we wish to undo the beautiful
unification of space and time given to us by general relativity and slice the
manifold into spatial hypersurface that evolve in some coordinate time t to
recover the full structure of the original manifold. To do this, we first imagine

3Here is where I’ll cite foundational papers in NR. Maybe Frans Pretorius?
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two slices, Σt and Σt+dt and define a normal vector on a slice by considering
our usual operator for constructing vectors normal to surfaces, the gradient.

Figure 1: A manifold M, endowed with a metric gµν , is sliced into three-
dimensional hypersurfaces Σt and Σt+dt, which are separated by their orienta-
tion along the direction of the normal vector nµ.

Because we want time to increase from surface Σt to Σt+dt, in constructing
this normal vector from a gradient, we must also introduce a negative sign to
keep it future-pointing. We must additionally add a normalization constant,
α, whose exact structure we will analyze soon. This leaves us with the normal
vector to a spatial hypersurface defined as

nµ = −α∇µt. (1)

Since nµ is a timelike vector, we normalize it such that

nµnν = gµνnνnν = −1, (2)

which reflects our choice of metric signature (−,+,+,+) and resembles the
normalization of four-velocity in general relativity.

From this definition of the normal vector, we wish to define the spatial metric
induced on the hypersurfaces by gµν . To do this, we must first consider how to
decompose a general vector into components parallel and perpendicular to this
normal vector. We proceed by first using the fact that any general vector Aµ

can be decomposed into components parallel and perpendicular to nµ, written:

Aµ = Aµ
∥ +Aµ

⊥. (3)

Since Aµ
∥ is parallel with nµ, we can write it as having a magnitude of −nνA

ν

and direction of nµ, where the negative sign has again been added to account
for our metric signature. Using this in Eq. (3) and rearranging it to solve for
Aµ

⊥ gives us
Aµ

⊥ = Aµ + nνn
µAν .
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We now use the fact that Aµ = δµνA
ν to express Aµ

⊥ as some operator acting on
our vector Aν :

Aµ
⊥ = Aν

(
δµν + nνn

µ
)
,

which we define to be a projection operator

γµ
ν := δµν + nνn

µ (4)

that returns only the spatial components of a given vector Aµ.
We now use this projection operator to define our induced spatial metric.

We begin by again using the fact that the Kronceker delta allows us to swap
the indices on any tensor:

gµν = δλµδ
σ
ν gλσ.

We then rearrange Eq. (4) to write its δλµ and δσν in terms of our newly-derived
projection operator:

gµν = (γµn
λ − nλ

µ)(γ
σ
ν − nνn

σ)gλσ

= γλ
µγ

σ
ν gλσ − γµn

λnνn
σgλσ − γσ

ν n
λ
µgλσ + nµn

λnνn
σgλσ.

For the two cross-terms in our expansion, we first use the metric to swap indices
with one of the normal vectors, which then leaves us with an expression for the
inner product between the spatial metric and a normal vector. Since the spatial
metric and normal vector are orthogonal, their inner product vanishes, leaving
us with

gµν = γλ
µγ

σ
ν gλσ + nµn

λnνn
σgλσ. (5)

To simplify this further, we again use the metric and our projection operator to
swap indices and make use of the normalization condition for the normal vector
to compute

gµν = γλ
µγνλ + nµn

λnνnλ

= γµν − nµnν .

With this, we have found

γµν = gµν + nµnν , (6)

which is our induced spatial metric. Given a spacetime metric gµν , one uses
Eq. (6) to derive a purely spatial metric on a hypersurface Σt.

Because our spatial hypersurfaces are evolving over coordinate time, we also
wish to describe how exactly these slices change over time. In the context of the
language we have introduced, we wish to determine the change, captured by the
covariant derivative ∇σ, of our normal vector nλ and project this quantity onto
our spatial surfaces. Because we have two indices that require projections, we
will use two projection operators to define the quantity of extrinsic curvature,

Kµν := −γσ
µγ

λ
ν∇σnλ.
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The extrinsic curvature tells you how your normal vector changes over the sur-
face of the spatial slices, which gives us a measure of how the spatial hypersur-
faces change over time. We then use Eq. (6) to express the extrinsic curvature
as:

Kµν = −
(
gσµ + nµn

σ
)(
gλν + nνn

λ
)
∇σnλ

and we use the fact that

nνn
λ∇σnλ = nν∇σ

(
nλnλ

)
= 0 (7)

to write our expansion as

Kµν = −
(
gσµg

λ
ν + nµn

σgλν
)
∇σnλ.

We then use our metric terms to swap indices in this expression:

Kµν = −gσµg
λ
ν∇σnλ − nµn

σgλν∇σnλ

= −gσµ∇σnµ − nµn
σ∇σnν .

We then define the acceleration of a normal vector as

aν := nσ∇σnν (8)

to conclude
Kµν = −∇µnν − nµaν . (9)

Before moving on to applying these tools to the field equations of general
relativity, we must express the extrinsic curvature in a more physically intuitive
form: as the time derivative of the induced spatial metric. To do this, we
must introduce the concept of a Lie derivative, which is a derivative that
measures differences in a tensor purely due to coordinate transformations, which
are related to how the metric changes over time. The formal definition of the
Lie derivative for any general tensor is provided in [10], but for the purposes
of this paper, we will only cite the result of when the Lie derivative along the
normal vector of the induced spatial metric is computed. This results in:

Lnγµν = nλ∇λγµν + γλν∇µn
λ + γµλ∇λn

λ.

Using our definition of the spatial metric, we then express this as

Lnγµν = nλ∇λ

(
gµν + nµnν

)
+

(
gλν + nλnν

)
∇µn

λ +
(
gµλ + nµnλ

)
∇λn

λ.

Using the fact that the geometry described by the metric does not change as we
move across it, written as

∇σgµν = 0,

and the result from Eq. (7) twice, we get

Lnγµν = nλ∇λ

(
nµnν

)
+ gλν∇µn

λ + gµλ∇νn
λ.
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Noticing the indices on the remaining terms that contain the metric, we are
allowed to pull each of the remaining metrics inside of the covariant derivative
and lower the index of the remaining normal vector terms, while using the
product rule to expand the term that doesn’t depend on the metric:

Lnγµν = nνn
λ∇λnµ + nµn

λ∇λnν +∇µnν +∇νnµ.

Finally, using the definition of the acceleration of the normal vector, Eq. (8),
our definition of the extrinsic curvature from Eq. (9), and the fact that nµ is
orthogonal to aν , which means they commute and allows us to state nνaµ =
nµaν , we conclude that

Lnγµν = −2Kµν . (10)

This directly relates the extrinsic curvative to how the spatial metric changes
over the direction of the normal vector, which captures the direction of time
flow in 3+1 decomposition.

With these tools, we are ready to approach decomposing the field equations
of general relativity.

2.2 ADM Formulation of General Relativity

The field equations of general relativity are

Rµν − 1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (11)

where Rµν and R are defined in Appendix A, and Λ is the cosmological constant
that incorporates the expansion of the universe plays on the metric gµν . This
expansion rate is often set to zero when dealing with “local” applications of
general relativity; scales where the expansion rate of the universe does not play
a significant effect, such as in black hole dynamics, gravitational waves, and
solar system dynamics.

To apply the 3+1 decomposition to the Einstein field equations using the
tools introduced in the previous section, we must decompose the Riemann ten-
sor, defined as

Rλ
µνσ = ∂νΓ

λ
µσ − ∂σΓ

λ
µν + Γλ

ρνΓ
ρ
µσ − Γλ

ρσΓ
ρ
µν , (12)

since this is the fundamental quantity that appears in the field equations of
general relativity.

We must now compute the spatial-spatial projection γµ
i γ

ν
j , the normal-

normal projection nµnν , and the mixed projection γµ
i n

ν of the Riemann tensor
to begin writing general relativity in the ADM formulation.

The spatial-spatial projection of the Riemann tensor is carried out in Ap-
pendix B, which results in:

(3)Rγ
σαβ = γµ

αγ
ν
βγ

γ
λγ

ρ
σR

λ
ρµν +Kγ

βKασ −Kγ
αKβσ, (13)

called Gauss’ equation.
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Additionally provided in Appendix B is the contraction of two indices for
the spatially-projected Riemann tensor, which results in the spatially-projected
Ricci tensor,

(3)Rσβ = γν
βγ

ρ
σRρν + γν

βγ
ρ
σnλn

µRλ
ρµν ++Kα

βKασ −KKβσ. (14)

This is important because the Ricci tensor appears in the field equations. The
Riemann tensor is given more importance because it is more fundamental; one
derives the Ricci tensor from the Riemann tensor by contracting two of its
indices.

Taking the normal-normal and the mixed projections of the Riemann tensor
and then contracting the result to arrive at the projected Ricci tensor follows a
process that is very similar to the derivation demonstrated in Appendix B. The
results of these derivations will only be quoted in this thesis, but the interested
reader can refer to [10] for the full derivation.

When the normal-normal projection of the Riemann tensor is made, we get

γµ
i γ

ν
j n

λnσRµνλσ = LnKij +
1

α
(3)∇i

(3)∇jα+Kk
i Kkj , (15)

which is called Ricci’s equation.
When the mixed projection of the Riemann tensor is made, we get

γµ
j γ

ν
j γ

λ
kn

σRµνλσ = (3)∇jKik − (3)∇iKjk, (16)

which is called the Codazzi-Mainardi equation.
Having decomposed the fundamental variable of the Einstein field equations,

we can now begin inserting our derived expressions for these decomposed vari-
ables into Eq. (39). Again, since we had three unique decompositions, we will
have three unique expressions of the Einstein field equations.

See [10] for the full process on this substitution and simplification when these
steps are carried out. We again only quote the results here. For the spatial-
spatial projection of the Ricci tensor, we eventually write the field equations
as

∂tKij − α(Rij − 2KikK
k
j +KKij) =

(3)∇i
(3)∇jα− 4πMij + LβKij , (17)

where Mij are the matter terms, defined as

Mij := 2Sij − γij(S − ρ).

We define Sij to just be the spatial projection of the stress-energy tensor;

Sij := γµ
i γ

ν
j Tµν .

Intuitively, this would describe all of the spatial stresses and pressures seen by
an observer at rest on the manifold at a particular time.

When the normal-normal projected Ricci tensor is inserted into the field
equations, and the resulting expression is simplified, one eventually finds that
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(3)R+K2 −KijK
ij = 16πρ, (18)

which is called the Hamiltonian constraint equation since it constrains the
total energy a system may have at a given time. Here, we similarly define ρ to
be the normal-normal projection of the stress-energy tensor;

ρ := nµnνTµν ,

which represents the energy density that an observer at rest would experience.
K2 is called the mean curvature, defined as K2 := KijKij .

When the mixed projection of the Ricci tensor is inserted into the field
equations, one eventually finds

(3)∇i(K
ij − γijK) = 8πJ i, (19)

which is called the momentum constraint equation, where

J i := −γiµnνTµν

is called the momentum density. Like the energy density, this represents the
momentum of an object that an observer at rest would experience.

Equations (17), (18), and (19), along with the following condition:

∂tγij = −2αKij + Lβγij , (20)

are collectively called the ADM equations, which are the full reformulation of
the Einstein field equations in the 3+1 decomposition. Equations (17), (18), and
(19) capture how systems in a gravitational field evolve, while Eq. (20) captures
how the spatial metric changes over time, or how the gravitational field itself
changes. Eq. (20) can be derived from our previous relationship between the
extrinsic curvature and the Lie derivative, expressed in Eq. (10).

2.3 Scalar-Tensor-Vector-Gravity

Scalar-Tensor-Vector Gravity (STVG) modifies the action for a gravitational
field by adding additional terms to the original action for general relativity,
SGR;

S = SGR + Sϕ + SS

where Sϕ is the action of the massive vector field ϕµ, defined as

Sϕ = −
∫

d4x
√
−g

[
1

4
BµνBµν − V (ϕµ)

]
and SS is the action for the scalar fields G, µ, and ω, defined as

SS = −
∫

d4x
√
−g

[
1

G3

(
1

2
gµν∇µG∇νG− V (G)

)
+

1

G

(
1

2
gµν∇µω∇νω − V (ω)

)
+

1

µ2G

(
1

2
gµν∇µµ∇νµ− V (µ)

)]
.

(21)
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With this modified action, Moffat derives the tensor field equations of STVG
in [9], which are written as

Gµν +Qµν + Λgµν =
8πG

c4
T ′
µν (22)

where

Qµν =

(
∇α∇αgµνΘ−∇µ∇νΘ

)
G

and T ′
µν is the modified stress-energy tensor, which depends on the ordinary

matter-momentum tensor of general relativity TGR
µν , the contribution of the ϕµ

field Tϕ
µν , and the scalar G,ω, µ contributions TS

µν :

T ′
µν = TGR

µν + Tϕ
µν + TS

µν . (23)

Where

Tϕ
µν = ω

[
Bα

i Bjα − γij

(
1

4
BραBρα + V (ϕµ)

)
+ 2γµ

i γ
ν
j

∂V (ϕµ)

∂gµν

]
. (24)

For conciseness, we break the scalar field contributions into TS
µν = TG

µν + Tω
µν +

Tµ
µν , for the introduced G,ω, and ϕ fields. We will explicitly write out the TG

µν

term but note that the ω and µ terms take on the same form up to a factor of
some constants. Deriving it from the action given in Eq. (21), TG

µν becomes

TG
µν = − 1

G3

[
∇µG∇νG− 2

∂V (G)

∂gµν
− gµν

(
1

2
∇αG∇αG− V (G)

)]
. (25)

3 Results: Deriving the ADM Formulation of
SVTG

As explained in the previous section, to write a theory of gravity in the ADM
formulation, one needs to compute the three possible projections, the spatial-
spatial, normal-normal, and mixed projections, for each of the theory’s field
equations. The only field equation in general relativity is given by Eq. (39) since
we only have one fundamental variable, the metric gµν , whose evolution over
spacetime dictates gravitational curvature. Since Scalar-Tensor-Vector Gravity
modifies the tensor field equation of general relativity, we must compute these
projects for each of the added components of the theory in order to write it in the
ADM formalism. Since STVG additionally adds four new variables: the vector
field ϕµ and the scalar fields G,µ, ω, to fully write the theory in the ADM for-
mulation, one would also need to compute the projections of the field equations
that result from these, shown in Eqs. (24) and (25). Because only the tensor
field equation of STVG will allow us to make a direct comparison with general
relativity, decomposing its tensor field equation is of the most importance to
us and will be the part we spend the most time discussing. Future work would
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include additionally computing the projections of STVG’s four additional field
equations, but for the purposes of this thesis, we will only decompose its tensor
field equation.

To compute the projections of STVG’s tensor field equation, given in Eq.
(22), note that the theory only adds a Qµν term and modifies the stress energy
tensor, given in Eq. (22) in comparison with general relativity’s field equations,
given in Eq. (39). We must therefore carry out each of our three projections
for the Qµν term and the modified stress-energy tensor T ′

µν to decompose the
tensor field equations of STVG.

3.1 Spatial-Spatial Projections

First computing the spatial-spatial projection of the added Qµν term and mod-
ified stress-energy tensor in STVG, we begin with the Qµν term:

γµ
i γ

ν
j Qµν = γµ

i γ
ν
j

(
∇α∇αgµνΘ−∇µ∇νΘ

)
G

To compute this projection, we use the spatial metric as a raising and lowering
operator on the spacetime metric,

γij = γµ
i γ

ν
j gµν

and use the spatial projection operators to turn the spacetime covariant deriva-
tives into just spatial covariant derivative

Di := γµ
i ∇µ.

With these tools, we find(
∇α∇αγ

µ
i γ

ν
j gµνΘ− γµ

i ∇µγ
ν
j ∇νΘ

)
G

=

(
∇α∇αγijΘ−DiDjΘ

)
G = γµ

i γ
ν
j Qµν .

(26)

We then compute the spatial-spatial projection of the modified stress-energy
tensor, beginning with the contribution of the vector field, Tϕ

µν :

γµ
i γ

ν
j T

ϕ
µν = ωγµ

i γ
ν
j

[
Bα

µBνα − gµν

(
1

4
BραBρα + V (ϕµ) + 2

∂V (ϕµ)

∂gµν

)]
= ω

[
Bα

i Bjα − γij

(
1

4
BραBρα + V (ϕµ)

)
+ 2γµ

i γ
ν
j

∂V (ϕµ)

∂gµν

]
.

(27)

We then project the scalar contributions to the stress-energy tensor. Since there
are three scalar fields G,µ, and ω added to STVG, we must project each of
them. Thankfully, these terms don’t need any additional computations beyond
the basic identities used previously. We compute:

γµ
i γ

ν
j T

G
µν = − 1

G3

[
DiGDjG− 2γµ

i γ
ν
j

∂V (G)

∂gµν
− γij

(
1

2
∇αG∇αG−V (G)

)]
(28)
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3.2 Normal-Normal Projections

We now move on to fully projecting the field equations of STVG along the nor-
mal direction. First projecting the added Qµν term of the tensor field equations
by making use of our normal vectors’ normalization condition, given in Eq. (2),
we compute

nµnνQµν = nµnν

(
∇α∇αgµνΘ−∇µ∇νΘ

)
G

= −
(
∇α∇αΘ+∇µn

µ∇νn
νΘ

)
G.

We must now take a look at what the ∇µn
µ terms turn out to be. To do this,

we compute

∇µn
µ = gµσ∇µnσ =

(
γµσ − nµnσ

)
∇µnσ = γµσ∇µnσ

since nµ∇µ

(
nσnσ

)
= 0. To simplify our result to something more familiar, we

use the fact that K := −γµσ∇µnσ = ∇µn
µ, which allows us to conclude that

nµnνQµν = −
(
∇α∇αΘ+K2Θ

)
G. (29)

Computing the normal-normal projections of the vector stress-energy tensor:

nµnνTϕ
µν = ω

[
nµnνBα

µBνα +
1

4
BραBρα + V (ϕµ) + 2

∂V (ϕµ)

∂gµν

]
(30)

Then computing the normal-normal projection of the scalar stress-energy ten-
sor, where we will again only write out the G contribution since the ω and µ
contributions will be of the same form:

nµnνTG
µν = − 1

G3

[
K2G2 − 2nµnν ∂V (G)

∂gµν
+

1

2
∇αG∇αG− V (G)

]
. (31)

3.3 Mixed Projections

We now move on to computing the mixed projection of the added Qµν term in
the STVG tensor field equations. We compute:

γµ
i n

νQµν =

(
∇α∇αγ

µ
i n

νgµνΘ− γµ
i ∇µ∇νn

νΘ

)
G

=

(
∇α∇αγ

µ
i n

νgµνΘ+DiKΘ

)
G.

Further inspecting the γµ
i n

νgµν term:

γµ
i n

νgµν = γµ
i n

νγµν − γµ
i nµn

νnν = γµ
i nµ = ni = 0,

which makes our mixed projection of Qµν :

γµ
i n

νQµν = DiK (32)

13



since we had defined Θ = 1/G(x).
Computing the mixed projection of the vector stress-energy tensor:

γµ
i n

νTϕ
µν = ω

(
Bα

i n
νBνα + 2γµ

i n
ν ∂V (ϕµ)

∂gµν

)
. (33)

Computing the mixed projection of the scalar stress-energy tensor:

γµ
i n

νTG
µν =

1

G3

(
DiG

2K + 2γµ
i n

ν ∂V (G)

∂gµν

)
(34)

The collection of equations (26), (29), and (32) with the corresponding de-
compositions of the vector stress energy tensor given in Equations (27), (30),
and (33), and the corresponding decompositions of the scalar stress energy ten-
sor given in Equations (28), (31), and (34), give us the full decomposition of
STVG’s tensor field equations. These are the only modifications that have
a direct analog to the field equations of general relativity, since there aren’t
any separate vector or scalar field equations in general relativity as there are
in STVG. Because of this, with this collection of equations, we have written
Scalar-Tensor-Vector Gravity in the ADM formulation.
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A Differential Geometry and General Relativity

A.1 Notion of a Manifold

The framework of general relativity is written in the language of differential
geometry, so providing a short outline of its relevant elements is necessary. We
first define the topological space that general relativity is written on.

Definition 1. A manifold is a topological space M such that each point
p ∈ M has an open neighborhood U which is homeomorphic to an open subset
of a Euclidean space, Rn.

It is natural to formulate general relativity on manifolds because this space
allows us to define notions of distances, angles, and curvature. Manifolds also
provide the flexibility to describe the region near each point as flat, even when
the global topology is not necessarily flat, which is an assumption that, as we
will see, plays a crucial role in general relativity. A visualization of a manifold
is given in Fig. 2.

Figure 2: Space local to a point on a manifold will always appear Euclidean.

A.2 Vectors and Tensors on Manifolds

In special relativity, the globally flat geometry naturally defines a four-dimensional
vector space structure. When moving to more general topologies, however, this
vector space structure is lost. To retrieve these powerful tools in curved geome-
tries, we recover vectors on manifolds in the limit of infinitesimal displacements
about a point, which are called tangent vectors.

Definition 2. On a manifold M, let F denote the collection of continuously
differentiable functions from M into Rn. The tangent vector V at a point
p ∈ M is defined to be a map V : F → Rn which is (1) linear and (2) obeys
the Leibniz rule:

1. V (af + bg) = aV (f) + bV (g), for all f, g ∈ F , where a, b ∈ Rn;

2. V (fg) = f(p)V (g) + g(p)V (f).
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The collection of vectors tangent to a point p ∈ M is the tangent space
Tp(M). The tangent space at a point on a general manifold is illustrated in Fig
3.

In Rn, vectors V = (V 1, . . . , V n) define the directional derivatives V µ (∂/∂xµ)
and vice versa4, so it is natural to express tangent spaces in terms of the set of
directional derivatives (∂µ).

Figure 3: A vector V µ drawn in the tangent space Tp(M).

With tangent spaces allowing us to describe the set of all possible directions
one can move locally on a manifold, we now must introduce the tools for more
precisely describing how these directions are measured. We first define linear
forms.

Definition 3. A linear form at each point p ∈ M is the linear mapping ω
such that

ω : Tp(M) −→ R

for all p ∈ Tp(M).

The set of linear forms at p constitutes its own vector space, which is called
the dual space of Tp(M), denoted by T ∗

p (M). Vectors defined in the dual
space are called contravariant.

Given the natural basis (∂µ) of Tp(M) associated with a set of coordinates
(xµ) on a manifold, there exists a unique basis for T ∗

p (M), denoted by (dxµ)
such that

⟨dxµ, ∂ν⟩ = δµν ,

where δµν , called the Kroceker-delta, is defined as δµν = 0 when ν ̸= µ and δµν = 1
when ν = µ. This basis (dxµ) is called the dual basis of (∂µ). Note that the
natural bases are not the only possible choice in the vector space Tp(M). One

4Note that we are using the Einstein summation convention throughout, where a re-
peated index denotes summation over all its possible values; V µ ∂

∂xµ ≡
∑

µ V µ ∂
∂xµ where

µ ∈ {t, x, y, z} in relativity.
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could use a general basis (eµ) that is not related to any coordinate system on
M. Given (eµ), there then exists unique dual bases (eµ) ∈ T ∗(M) such that

⟨eµ, eν⟩ = δµν .

A smooth assignment of linear forms to each tangent space at points on a
manifold is called a 1-form. Given a smooth scalar field f on M, the canonical
1-form associated with it is the gradient of f , defined as

∇f =
∂f

∂xµ
dxµ.

With our definitions of tangent spaces and linear forms, we are now ready to
define general tensors, which are the fundamental objects in general relativity.
Tensors are a generalization of vectors and linear forms.

Definition 4. At a point p ∈ M, a tensor of type (k, ℓ) with (k, ℓ) ∈ N2 is a
mapping

T : T ∗
p (M)× · · · × T ∗

p (M)︸ ︷︷ ︸
k times

×Tp(M)× · · · × Tp(M)︸ ︷︷ ︸
ℓ times

−→ R (35)

that is linear with respect to each of its arguments. The natural number k + ℓ
is called the rank of the tensor.

Given a basis (eµ) of Tp(M) and the corresponding dual basis (eµ) ∈ T ∗
p (M),

we can expand any tensor T of type (k, ℓ) as

T = T µ1...µk
ν1...νℓ

eµ1
⊗ · · · ⊗ eµk

⊗ eν1 ⊗ · · · ⊗ eνℓ .

where the ⊗ operation is the tensor product, with components XµV ν for vectors
X and Y .

With tangent spaces and general tensors defined, we can now move on to
the key structure of a manifold, the metric g.

Definition 5. Definition of Metric A metric is a (0,2) tensor that allows one
to define distances and angles on a given manifold. A metric acts on vectors in
the tangent space Tp(M) by

g : Tp(M)× Tp(M) −→ R,

is symmetric; g(u, v) = v, u, and is non-degenerate; there exists a non-zero
v ∈ Tp(M) such that g(u,v) = 0 for all u ∈ Tp(M).

In a given basis (eµ) of Tp(M), the components of g are given by the matrix
gµν defined by the expression for a general tensor given in Eq. (35) with (k, ℓ) =
(0, 2):

g = gµνe
µ ⊗ eν .

For any vectors u and v, we then have that

g(u,v) = gµνu
µvν .
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A.3 Connections on Manifolds and Curvature

In relativity and related theories, the space of physical events is represented by
a Lorentzian manifold M. Unlike a Riemannian manifold, which requires the
metric to be positive definite, a Lorentzian manifold allows the metric to have
an indefinite signature, meaning inner products can be positive, negative, or
zero. This feature preserves the causal structure of spacetime by distinguishing
between timelike, spacelike, and lightlike intervals5. Additionally, a Lorentzian
manifold has a tangent space at each point that is locally homeomorphic to flat
spacetime, described by the Minkowski metric ηµν . The tangent space represents
the set of possible directions for movement tangential to a point, allowing the
definition of differential objects like gradients on the manifold. The local flatness
of the Lorentzian manifold at each point ensures that, on small scales, spacetime
appears flat, preserving the validity of special relativity locally.

The manifold is endowed with a metric gµν , which smoothly assigns a value
to each point p onM. This smoothness is crucial for ensuring the continuity and
differentiability of the manifold. The metric allows the calculation of lengths
and angles on TpM, the tangent space at each point. The metric gµν encodes
the local geometry of the manifold near a point.

The tangent space at a point provides a way to approximate the manifold
by flat spacetime at that point. Specifically, at any point p on the manifold, the
tangent space TpM locally resembles flat spacetime:

(M, gµν)
Tp(M)−−−−→ (R1,n, ηµν).

Every Lorentzian manifold comes with a Levi-Civita connection, which is
a specific type of affine connection that is associated with a Lorentzian manifold.
An affine connection is a geometrical object that connects tangent spaces at
points on a manifold so that derivatives can be taken on the manifold.

5See Appendix B for an explanation of causality in relativity.
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Figure 4: The affine connection from point p to q on a spherical manifold. The
tangent spaces and a vector in them for each point are also shown.

This affine connection (just referred to as connection) is used to define the
covariant derivative of a vector V µ, defined as

∇νV
µ = ∂νV

µ + Γµ
νλV

λ

where the ∂νV
µ term captures how the vector itself changes from p to q (as

usual) and the Γµ
νλV

λ term, called Christoffel symbols, captures how the
shape of the manifold (V µ’s basis vectors) changes along the path. The Christof-
fel symbols are the coefficients of the connection. Since the Christoffel symbols
capture how the manifold changes from one point to another, it shouldn’t be
surprising that their definition contains first derivatives of the metric;

.Γµ
νλ =

1

2
gσµ

(
∂gσν
∂xλ

+
∂gσλ
∂xν

+
∂gνλ
∂xσ

)
. (36)

In a flat spacetime, the metric would never change from one point to another,
meaning Γµ

νλV
λ = 0, which means our covariant derivative would become

∇νV
µ = ∂νV

µ,

which is the regular definition of the gradient operator (so the covariant deriva-
tive is just the generalization of the gradient operator to curved spacetimes).
If the covariant derivative of a vector along a path is zero, this means that the
vector has not changed its orientation over the path. In this case, we say it has
been parallel transported across the manifold.
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Note that the shortest path on a manifold, called its geodesic, is described
by the geodesic equation:

d2xµ

dτ2
+ Γµ

νλ

dxν

dτ

dxλ

dτ
= 0

where the xµ terms are the coordinates on the manifold and τ is the proper
time; the time measured by the observer moving along the geodesic.

To measure the curvature of the manifold, we must know how the metric,
which, again, describes how the geometry near a point changes, itself changes
over the manifold. Specifically, we must know how the geometry near each
point changes and how these changes vary from point to point. The curvature
of the manifold, which encapsulates how the manifold deviates from flatness, is
described by the Riemann curvature tensor, defined as

Rλ
σµν := ∂µΓ

λ
σµ − ∂νΓ

λ
σµ + Γλ

ρµΓ
ρ
σν − Γλ

ρνΓ
ρ
σµ. (37)

With the Riemann tensor, we define another tensorial object of two lower
rank by contracting (summing over the indices of) the Riemann tensor:

Rµν := Rλ
µλν .

This new quantity, called the Ricci tensor, still contains information about
the curvature of your manifold from the Riemann tensor but now in a more
compact form. The Ricci tensor therefore also describes curvature of a manifold
but in a more compact form.

We then define another quantity, called the Ricci scalar (or often referred
to as the scalar curvature), as the trace of the Ricci tensor with respect to the
inverse metric:

R := gµνRµν .

Since the metric defines the geometry of your manifold near a point and the
Ricci tensor is a compact measure for the curvature of the manifold, this Ricci
scalar describes the average curvature at a point. It should be no surprise
that a measure for the average curvature at a point depends on some notion for
what the curvature of a manifold looks like and what the geometry around a
single point looks like.

With these tools in place, we may now approach the cornerstone of general
relativity, the Einstein field equations. The Riemann tensor, defined in Eq.
(37), is the fundamental variable to the field equations. The Ricci tensor and
Ricci scalar are the only variables that actually appear in the field equations,
but they are both arrived at from the Riemann tensor, so they aren’t treated as
being the fundamental quantity. There are countless resources to find a proper
derivation of the Einstein field equations, which is arrived at by constructing the
proper action and applying the principle of least action to it. For the purposes
of this thesis, I will only provide the correct action, called the Einstein-Hilbert
action, which leads to the field equations of general relativity when the principle
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of least action, δS = 0, is applied to it. The Einstein-Hilbert action is

S =
c4

4πG

∫
R
√
−g d4x. (38)

When the principle of least action is applied to Eq. (38), the Einstein field
equations are arrived at, written as

Rµν − 1

2
Rgµν =

8πG

c4
Tµν . (39)

For a full derivation of the Einstein field equations from the Einstein-Hilbert
action, see [11].

B Spatial Projection of Riemann Curvature Ten-
sor

For reasons outside the scope of this thesis, we can write the Riemann curvature
tensor as a commutator of covariant derivatives:

(DαDβ −DβDα)V
γ = (3)Rγ

µαβV
µ. (40)

We want to now write these covariant derivatives, DαDβV
γ , only in terms of

spatial components in order to spatially project the Riemann tensor:

Dα(DβV
γ) = γµ

αγ
ν
βγ

γ
ρ∇µ(DνV

ρ)

where γµ
α transforms the derivative Dβ and the γν

βγ
γ
ρ term transforms the rank-

two object DβV
γ . We must now consider what the DνV

ρ term is before pro-
ceeding:

DαDβV
γ = γµ

αγ
ν
βγ

γ
ρ∇µ(DνV

ρ) = γµ
αγ

ν
βγ

γ
ρ (∇µ(γ

σ
ν γ

ρ
λ∇σV

λ))

DαDβV
γ = γµ

αγ
ν
βγ

γ
ρ

(
(∇µγ

σ
ν )γ

ρ
λ∇σV

λ + γσ
ν (∇µγ

ρ
λ)∇σV

λ + γσ
ν γ

ρ
λ∇µ(∇σV

λ)

)
using the fact that

∇µγ
σ
ν = nσ∇µnν + nµ∇µn

σ,

we have

DαDβV
γ = γµ

αγ
ν
βγ

γ
ρ

(
γρ
λn

σ(∇µnν)∇σV
λ + γρ

λnν(∇µn
σ)∇σV

λ

+∇σV
λnλγ

σ
ν (∇νn

ρ) +∇σV
λnργσ

ν (∇νnλ) + γσ
ν γ

ρ
λ∇ν(∇σV

λ)

)
using the fact that γρ

νγ
ν
λ = γρ

λ and γν
λnν = 0, we can show that two terms go to

zero by:
γρ
λnν(∇µn

σ)∇σV
λ = γρ

νγ
ν
λnν(∇µn

σ)∇σV
λ = 0
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and
∇σV

λnργσ
ν (∇νnλ) = ∇σV

λnργσ
ρ γ

ρ
ν (∇νnλ) = 0

This results in

DαDβV
γ = γµ

αγ
ν
βγ

γ
ρ

(
γρ
λn

σ(∇µnν)∇σV
λ

+∇σV
λnλγ

σ
ν (∇νn

ρ) + γσ
ν γ

ρ
λ∇ν(∇σV

λ)

)
Distributing the gamma terms and using the fact that (∇σV

λ)nλ = −V λ∇σnλ,
we get

DαDβV
γ = γµ

αγ
ν
βγ

γ
ργ

ρ
λn

σ(∇µnν)∇σV
λ

−γµ
αγ

ν
βγ

γ
ρV

λ∇σnλγ
σ
ν (∇νn

ρ) + γµ
αγ

ν
βγ

γ
ργ

σ
ν γ

ρ
λ∇ν(∇σV

λ)

After simplifying the γ’s now in front of each term and using the definition of
the extrinsic curvature Kαβ = −γµ

α∇µnβ = −γµ
αγ

ν
β∇µnν , we have

DαDβV
γ = −Kαβγ

γ
λn

σ∇σV
λ −Kγ

αKβλV
λ + γµ

αγ
σ
βγ

γ
λ∇µ∇σV

λ

Now if we consider DβDαV
γ :

DβDαV
γ = −Kβαγ

γ
λn

σ∇σV
λ −Kγ

βKαλV
λ + γµ

βγ
σ
αγ

γ
λ∇µ∇σV

λ

We can simplify this expression by swapping the σ and µ indices in the last term
and by using the fact that the extrinsic curvature is symmetric (Kµν = Kνµ),
leaving us with

DβDαV
γ = −Kαβγ

γ
λn

σ∇σV
λ −Kγ

βKαλV
λ + γσ

βγ
µ
αγ

γ
λ∇σ∇µV

λ

We can take the difference of these two expressions for the Ricci identity,
leaving us with

(DαDβ −DβDα)V
γ = (KαλK

γ
β −KβλK

γ
α)V

λ + γµ
αγ

σ
βγ

γ
λ(∇µ∇σV

λ −∇σ∇µV
λ)

and since
Rλ

ρµσV
ρ := ∇µ∇σV

λ −∇σ∇µV
λ,

we have

(DαDβ −DβDα)V
γ = (KαλK

γ
β −KβλK

γ
α)V

λ + γµ
αγ

σ
βγ

γ
λR

λ
ρµσV

ρ

= (3)Rγ
ραβV

ρ

from using the three and four dimensional Ricci identities. We then use the fact
that V ρ = γρ

σV
σ to result in

(3)Rγ
ραβV

σ =

(
KαρK

γ
β −KβρK

γ
α + γµ

αγ
ν
βγ

γ
λR

λ
ρµν

)
γρ
σV

σ

so because we have shown that this property hold for any vector V σ, we have
derived

(3)Rγ
σαβ = γµ

αγ
ν
βγ

γ
λγ

ρ
σR

λ
ρµν +Kγ

βKασ −Kγ
αKβσ , (41)
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which is called Gauss’ equation. This is the fully spatial projection of the 4-
dimensional Riemann tensor.

To find the contracted Gauss’ equation, which will result in the spatial-
spatial projection of the Ricci tensor, we contract over the α and γ indices:

(3)Rσβ = γµ
αγ

ν
βγ

α
λγ

ρ
σR

α
ρµν +Kα

βKασ −KKβσ.

Using the fact that γµ
αγ

α
λ = γµ

λ and γµ
λ = δµλ + nλn

µ, we have

(3)Rσβ = γν
βγ

ρ
σRρν + γν

βγ
ρ
σnλn

µRλ
ρµν ++Kα

βKασ −KKβσ, (42)

which gives us the spatial-spatial projection of the Ricci tensor.
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