
1 Correlation Functions and Power Spectra on
2D Planes

Random variable: a discrete variable whose value is drawn from an underlying
distribution. Example: drawing the CMB temperature at random points on the
map T (xi, yi).

Random field: when the random variable becomes a continuous function
across all space considered. Example: having a continuous function that de-
scribes CMB temperature T (x, y).

Define the density contrast field:

δ(x) :=
δρ

ρ
=

ρ(x)− ⟨ρ⟩
⟨ρ⟩

(1)

which indicates deviations from the mean matter density in the universe and is
defined such that ⟨δ(x)⟩ = 0. Defining a quantity whose mean is zero is a useful
trick.

Define the autocorrelation function:

ξ(r) = ⟨δ(x)δ(x′)⟩ (2)

Note that one can only compute the mean value of a uncertain quantity.

The Fourier pair of δ(x) is:

δ(x) =
V

(2π)3

∫
δ(k)eik·xd3k

δ(k) =
(2π)3

V

∫
δ(x)e−ik·xd3x

(3)

Using these definitions in ξ(r):

ξ(r) =

〈
V 2

(2π)6

∫
δ(k)eik·xd3k

∫
δ(k′)eik

′·x′
d3k′

〉
=

V 2

(2π)6

∫
eik·xd3k

∫
eik

′·x′ 〈
δ(k)δ(k′)

〉
d3k′

=
V 2

(2π)6

∫
eik·xd3k

∫
eik

′·x′
(
(2π)3δD(k + k′)P (k)

)
d3k′

=
V

(2π)3

∫
eik·xe−ik·x′

P (k)d3k

=
V

(2π)3

∫
e−ik·rP (k)d3k

(4)

Which tells us that
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P (k) =
(2π)3

V

∫
eik·rξ(r)d3r (5)

Since we assume isotropy of the CMB, we know that k will only depend
on its magnitude k and not its direction. This tells us to switch to spherical
coordinates (we’re in 3D): ⟨kx, ky, kz⟩ → ⟨k, θ, ϕ⟩ where θ : [0, π] and ϕ : [0, 2π]
as usual. Recall the transformation dkxdkydkz = k2 sin θdkdθdϕ and r · k =
kr cos θ:

ξ(r) =
V

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

e−ikr cos θP (k)k2 sin θdϕdθdk

=
V

(2π)3

∫ ∞

0

∫ π

0

2πk2P (k)e−ikr cos θ sin θdθdk

=
V

(2π)3

∫ ∞

0

2πk2P (k)

(
eikr − e−ikr

ikr

)
dk

=
V

(2π)3

∫ ∞

0

2πk2P (k)
2 sin(kr)

kr
dk

=
V

(2π)3

∫ ∞

0

P (k)
sin(kr)

kr
4πk2dk

(6)

Effort has gone into predicting the realized form of P (k) in cosmology, but
such efforts are limited by our lack of observational data on the early universe.
As such, P (k) is typically assumed to be a featureless power law:

P (k) ∝ kn (7)

For reasons I have to think about more, a dimensionless power spectrum is
defined:

∆2(k) =
V

(2π)3
4πk3P (k) (8)

ξ(r) =

∫ ∞

0

∆2(k)
sin(kr)

r
dk (9)

1.1 Simulating a Gaussian Random Field on a 2D Plane

Because we wish to simulate the Gaussian random field, our goal is to simulate
δ(x, y).

P (k) =
1

k2x + k2y
(10)

δ(x, y) =
∑
i,j

Aije
i(kxx+kyy) (11)

where

Aij =

√
P (ki, kj)

2
(aij + ibij) (12)

2



2 Correlation Functions and Power Spectra on
2D Spheres

The CMB does not actually exist on a 2D plane, though, so we need a way
of writing correlation functions and power spectra on a 2D sphere. We are
specifically interested in the CMB temperature as a function of sky location
T (n), where n is a vector drawn from the center of a CMB sky map. The
corelation function will be defined as

C(θ) = ⟨T (n)T ∗(n′)⟩ (13)

where θ = arccos(n · n′).
Just as in the planar case, we express our functions T (n) as an expansion

of basis functions. Since we are on a sphere and the basis functions of a sphere
are spherical harmonics, we write

T (n) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(n) (14)

where Yℓm(n), the spherical harmonics, are the spherical analogs of eik·x basis
functions.

To motivate the form of aℓm, recall that the planar coefficients in the Fourier
basis f(x) =

∑
n An exp(inx) are

An =

∫
f(x)e−inxdx. (15)

Similarly, the aℓm spherical coefficients are defined as

aℓm =

∫
T (n)Y ∗

ℓm(n)dΩn. (16)

Using the definition of T (n) written in the spherical harmonic basis, we can
now simplify our correlation function expression:

C(θ) =

〈∑
ℓm

aℓmYℓm(n)
∑
ℓ′m′

aℓ′m′Y ∗
ℓ′m′(n)

〉
=

∑
ℓm

∑
ℓ′m′

YℓmY ∗
ℓ′m′ ⟨aℓmaℓ′m′⟩

=
∑
ℓm

∑
ℓ′m′

YℓmY ∗
ℓ′m′

(
δℓℓ′δmm′C(ℓ)

)
=

∑
ℓm

YℓmY ∗
ℓmC(ℓ)

(17)

We finish by using the Addition Theorem for Spherical Harmonics:

Pℓ(cos θ) =
4π

2ℓ+ 1

∑
m

Yℓm(n)Y ∗
ℓm(n′) (18)
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where Pℓ is the Legendre polynomial of degree ℓ. Using this fact gives us

C(θ) =
1

4π

∑
ℓ

(2ℓ+ 1)Pℓ(cos θ)C(ℓ) (19)

2.1 Simulating a Gaussian Random Field on a 2D Sphere

T (n) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(n) (20)

where

aℓm =

√
C(ℓ)

2

(
aij + ibij

)
(21)

where aij and bij are random variables pulled from a Gaussian distribution.
And:

Yℓm =? (22)

3 Relating Angular Power Spectrum C(ℓ) to Power
Spectrum P (k) + Some Fourier Math

3.1 Fourier Transform of f ′(x)

Deriving an expression for F{f ′(x)} will be useful for the proceeding content:

F{f ′(x)} =

∫ ∞

−∞
eikx

d

dx
f ′(x)dx

= eikxf(x)

∣∣∣∣∞
−∞

−
∫ ∞

−∞
f(x)ikeikxdx

= −ik

∫ ∞

−∞
eikxf(x)dx = −ikf(k)

(23)

3.2 test

It’s given in Peebles that (don’t yet know how to get here):

τ :=
δT

T
= −1

3

Gρ0
D0

∫
δ(r′)

|r − r′|
d3r′ (24)

where ρ0 is ..., D0 is ... , and δ(r′) is the mass density contrast at some point
r′. If we then express δ(r′) as a Fourier integral, we have

τ = −1

3

Gρ0
D0

∫
δ(k)

(∫
eik·r

′

|r − r′|
d3r′

)
d3k (25)
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To evaluate this, consider f(r′) = 1
|r−r′| and take:

F{∇2f(r′)} =

∫
eik·r∇2f(r′)d3r′ = −4π

∫
eik·r

′
δ(r − r′)d3r′

= −k2F{f(r′)} = −4πeik·r

=⇒ F{f(r′)} =
4πeik·r

k2

(26)

This makes out τ expression:

τ = −4π

3

Gρ0
D0

∫
δ(k)

eik·r

k2
d3k (27)

We now define ΩH2
0 := 8

3Gρ0 for reasons I don’t understand. This makes our
expression for temperatures fluctuations:

τ = −ΩH2
0

2D0

∫
δ(k)

eik·r

k2
d3k (28)

To begin relating C(ℓ) to P (k), we will first use the plane wave expression for
eik·r:

eik·r = 4π

∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓjℓ(k · r)Yℓm(r̂)Y ∗
ℓm(k̂) (29)

This makes τ :

τ = −4πΩH2
0

2D0

∫
δ(k)

k2

∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓjℓ(k · r)Yℓm(r̂)Y ∗
ℓm(k̂)d3k (30)

We will now use

aℓm =

∫
τY ∗

ℓmdΩ (31)

since
〈
|aℓm|2

〉
will give us the angular power spectrum C(ℓ), and we have a δ(k)

inside of the expression for τ that will eventually give us a P (k) term when we
take

〈
|aℓm|2

〉
. Using this fact (I actually don’t know what the introduced Y ∗

ℓm is
a function of... I’ll guess n but I don’t know how this then matches the existing
Yℓm(r)):

aℓm = −2πΩH2
0

D0

∫
δ(k)

k2

∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓjℓ(k · r)Y ∗
ℓm(k̂)

(∫
Yℓm(r)Y ∗

ℓm(n)dΩ

)
d3k

= −2πΩH2
0

D0

∫
δ(k)

k2

∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓjℓ(k · r)Y ∗
ℓm(k̂)δℓℓ′δmm′d3k

= −2πΩH2
0

D0

∫
δ(k)

k2

∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓjℓ(k · r)Y ∗
ℓm(k̂)d3k

(32)
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Now we take
〈
|aℓm|2

〉
to arrive at C(ℓ):

C(ℓ) =
〈
|aℓm|2

〉
=

4π2Ω2H4
0

D2
0

∫ ∫
1

k2
1

k′2

∑
ℓm

∑
ℓ′m′

iℓjℓ(k · r)iℓ
′
jℓ′(k

′ · r′)Y ∗
ℓmYℓ′m′

〈
δ(k)δ(k′)

〉
d3kd3k′

=
4π2Ω2H4

0

D2
0

∫ ∫
1

k2
1

k′2

∑
ℓm

∑
ℓ′m′

iℓjℓ(kr)i
ℓ′jℓ′(k

′r)Y ∗
ℓmYℓ′m′δ3(k − k′)P (k)d3k′d3k

=
4π2Ω2H4

0

D2
0

∫
1

k2

∑
ℓm

∑
ℓ′m′

iℓjℓ(kr)i
ℓ′jℓ′(kr)Y

∗
ℓmYℓ′m′P (k)dΩdk

=
4π2Ω2H4

0

D2
0

∫
1

k2
P (k)

∑
ℓm

∑
ℓ′m′

iℓjℓ(kr)i
ℓ′jℓ′(kr)

(∫
Y ∗
ℓmYℓ′m′dΩ

)
dk

=
4π2Ω2H4

0

D2
0

∫
1

k2
P (k)

∑
ℓm

∑
ℓ′m′

iℓjℓ(kr)i
ℓ′jℓ′(kr)δℓℓ′δmm′dk

=
4π2Ω2H4

0

D2
0

∫
1

k2
P (k)

∑
ℓ

iℓjℓ(kr)i
ℓjℓ(kr)dk

=
4π2Ω2H4

0

D2
0

∫
1

k2
P (k)j2ℓ (kr)dk

(33)
So we have

C(ℓ) =
4π2Ω2H4

0

D2
0

∫
1

k2
P (k)jℓ(kr)

2dk (34)

... given a power spectrum P (k), we can generate an angular power spectrum
C(ℓ) using this relation!

In general, a transfer function Wℓ(k) is defined, which describes how fluc-
tuations at different scales k are mapped to angular scales on the sky ℓ. So we
have a transfer function:

Wℓ(k) =
4π2Ω2H2

0

D2
0

jℓ(kr)
2

k2
(35)

(maybe look into other transfer functions now and understand when the one
above applies?)

6


