1 Correlation Functions and Power Spectra on
2D Planes

Random variable: a discrete variable whose value is drawn from an underlying
distribution. Example: drawing the CMB temperature at random points on the
map T'(zi, ;).

Random field: when the random variable becomes a continuous function
across all space considered. Example: having a continuous function that de-
scribes CMB temperature T'(z,y).

Define the density contrast field:
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which indicates deviations from the mean matter density in the universe and is

defined such that (§(x)) = 0. Defining a quantity whose mean is zero is a useful
trick.

Define the autocorrelation function:
&(r) = (0(z)o(x)) (2)
Note that one can only compute the mean value of a uncertain quantity.

The Fourier pair of é(x) is:

Using these definitions in &(r):
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Which tells us that
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Since we assume isotropy of the CMB, we know that k will only depend
on its magnitude k£ and not its direction. This tells us to switch to spherical
coordinates (we're in 3D): (ky, ky, k,) — (k, 6, ¢) where 0 : [0, 7] and ¢ : [0, 27]
as usual. Recall the transformation dk,dk,dk, = k*sinfdkdfd¢ and r - k =
kr cos 6:
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Effort has gone into predicting the realized form of P(k) in cosmology, but
such efforts are limited by our lack of observational data on the early universe.
As such, P(k) is typically assumed to be a featureless power law:
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For reasons I have to think about more, a dimensionless power spectrum is

defined:
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1.1 Simulating a Gaussian Random Field on a 2D Plane

Because we wish to simulate the Gaussian random field, our goal is to simulate
d(z,y).
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2 Correlation Functions and Power Spectra on
2D Spheres

The CMB does not actually exist on a 2D plane, though, so we need a way
of writing correlation functions and power spectra on a 2D sphere. We are
specifically interested in the CMB temperature as a function of sky location
T(n), where n is a vector drawn from the center of a CMB sky map. The
corelation function will be defined as

C(0) = (T(n)T"(n')) (13)

where 6 = arccos(n - n').

Just as in the planar case, we express our functions T(n) as an expansion
of basis functions. Since we are on a sphere and the basis functions of a sphere
are spherical harmonics, we write
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where Yy,,,(n), the spherical harmonics, are the spherical analogs of €’*'® basis
functions.

To motivate the form of ay,,, recall that the planar coefficients in the Fourier
basis f(x) =), A, exp(inx) are

A, = / F@)eimvdz. (15)
Similarly, the ag,, spherical coefficients are defined as
Ao = /T(n)Yefn(n)dQn. (16)

Using the definition of T'(n) written in the spherical harmonic basis, we can
now simplify our correlation function expression:
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We finish by using the Addition Theorem for Spherical Harmonics:
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where Py is the Legendre polynomial of degree ¢. Using this fact gives us
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2.1 Simulating a Gaussian Random Field on a 2D Sphere
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where a;; and b;; are random variables pulled from a Gaussian distribution.
And:
er'rn =7 (22)

3 Relating Angular Power Spectrum C'(¢) to Power
Spectrum P(k) 4+ Some Fourier Math

3.1 Fourier Transform of f'(x)

Deriving an expression for .#{f'(z)} will be useful for the proceeding content:
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3.2 test
It’s given in Peebles that (don’t yet know how to get here):
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where pg is ..., Dg is ... , and (') is the mass density contrast at some point
r’. If we then express §(r’) as a Fourier integral, we have
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To evaluate this, consider f(r') = and take:
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This makes out 7 expression:
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We now define QHZ := §Gpy for reasons I don’t understand. This makes our
expression for temperatures fluctuations:
QHZ ek
=— 5(k d’k 2
r=opl [ a0 (28)

To begin relating C'(¢) to P(k), we will first use the plane wave expression for
eik-r:
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This makes 7:
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We will now use
o /TYejndQ (31)

since (|agy,|?) will give us the angular power spectrum C(¢), and we have a (k)
inside of the expression for 7 that will eventually give us a P(k) term when we
take (|agn|?). Using this fact (I actually don’t know what the introduced Yy, is
a function of... T'll guess n but I don’t know how this then matches the existing

Yo (r)):
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Now we take (|an,|?) to arrive at C(¢):
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So we have
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. given a power spectrum P(k), we can generate an angular power spectrum
C(¢) using this relation!

In general, a transfer function Wy (k) is defined, which describes how fluc-

tuations at different scales k are mapped to angular scales on the sky ¢. So we
have a transfer function:
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(maybe look into other transfer functions now and understand when the one
above applies?)



