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1 Closed Quantum Mechanics

1.1 Hilbert space, wavefunctions, and operators

Up until the early twentieth century, all observable quantities about a system were thought to be single-valued and
continuous; that if observed, a system would only exist in a single value of that variable and if it were to change, it
would do so continuously. All of the physics prior to the twentieth century was therefore carried out in functional
representations; functions gave physicists exact values for a system’s quantities and continuous trajectories of them to
describe nature by. Beginning with Max Planck’s heuristic derivation of the law of blackbody radiation and Einstein’s
discovery of the photoelectric effect though, it began to be realized that the observed values of these variables for
a quantum system were discrete and were probabilistically determined. In order to construct physics for quantum
systems, it was realized that linear algebra would be a necessary framework for doing so.

Because the values for physical quantities were found to be discrete and whose values for those quantities were
probabilistically determined upon measurement, it was realized that the state of a quantum particle was required to
be described by a linear superposition of all possible states with constants that described the probabilistic amplitude
of each state. If a quantum particle has a set of energies {|Ei⟩}, each with probability amplitude ci, the actual
probability of observing this particle with energy state |Ei⟩ is the squared modulus of its probabilistic weight, cic̄i.
For example, if we were only interested in a single particle’s energy levels, the full state of the particle, |ψ⟩, would
be expressed as:

|ψ⟩ = c1 |E1⟩+ c2 |E2⟩+ · · ·+ cn |En⟩ =
∑
i

ci |Ei⟩ (1)

In the language of linear algebra, the state |ψ⟩ of a quantum particle is represented by a vector in some vector
space where the linearly independent components of these vectors, E1, E2, . . . , En are the basis vector states for that
quantity; they represent the definite, possible values that the quantity E could take on that are mutually independent.
The number n of linearly independent vectors needed to describe the state of a quantum system form the basis for
the Hilbert space H of the system, a generalized vector space on which the vectors describing the state of our system,
|ψ⟩, act.

In quantum mechanics, the language used to describe quantities such as position and momentum indicates them
as observables since these are the quantities of the quantum system that could be physically observed. The most
obvious observables of a quantum system are its energy E, angular momentum L, position x, and momentum p. All
of these observables can be expressed as a linear combination of their basis vector states.

An operator Ô is a function that linearly maps vectors to vectors in a specified Hilbert space. Because it is
a linear map, its action on the basis states {|ψi⟩} ∈ H of a quantum system is all that is necessary to describe its
action on the full state |ψ⟩:

Ô |ψ⟩ = Ô

(∑
i

c |ψi⟩

)
=
∑
i

ciÔ |ψi⟩ . (2)

1.2 Unitaries and time evolution

Maybe the most important class of operators are those that are unitary, which satisfy the condition

U†U = UU† = 1. (3)

These unitary operators are usually used to describe the time evolution of a quantum system:

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ (4)

Note that this definition implicitly requires that U† = U , which gives U the property of being Hermitian. Unitary
operators are extremely important to quantum mechanics because they preserve one’s ability to talk about a system’s
state probabilities. Without unitarity, one could apply an operator to a quantum system and not get a valid state in
return, violating all interpretation of the wavefunction. To see how a unitary operator preserved probability, recall
that the inner product of any vector with itself will always be equal to one; ⟨ψ|ψ⟩ = 1. If we let ⟨ψ′| = ⟨ψ|U† and
|ψ′⟩ = U |ψ⟩, then we have

⟨ψ′|ψ′⟩ = ⟨ψ|UU† |ψ⟩ = ⟨ψ|1 |ψ⟩ = ⟨ψ|ψ⟩ = 1. (5)

We can also show that the eigenvalues of a unitary operator must always have a magnitude of one. We do this with
the eigendecomposition of

U |ψ⟩ = λ |ψ⟩ (6)
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and
⟨ψ|U† = ⟨ψ|λ†. (7)

Multiplying these expressions together, we have

⟨ψ|U†U |ψ⟩ = ⟨ψ|λ†λ |ψ⟩ (8)

and since U†U = 1, this requires that λ†λ ≡ |λ|2 = 1 =⇒ |λ| = 1.
Because of the fact that |λ| = 1 for all eigenvalues of a unitary matrix, it is convenient to write the operator as

U =
∑
k

eiλk |k⟩⟨k| (9)

where |k⟩ is one of the eigenstates (OF WHAT?). Doing this allows us to easily write

U(t) |k⟩ = eiλk(t) |k⟩ . (10)

(I don’t understand this... how can an eigenvalue change with time? ... I must not understand what
should be in the exponent there. The book has it written as exp(iαk)).

If we have a quantum system evolving in time by some unitary, |ψ(t)⟩ = U(t, t0) |ψ(t0)⟩, we may want to know
how the wavefunction itself is changing. Because the derivative of a vector is also a vector, there must exist an
operator Ĝ such that

Ĝ |ψ⟩ = d

dt
|ψ⟩ (11)

It’s common to consider the Hamiltonian operator (why is this? The book doesn’t seem to give much
motivation for this) Ĥ = iℏĜ so that

Ĥ |ψ⟩ = iℏ
d

dt
|ψ⟩ . (12)

This is called the Schrödinger equation. Written in this way, it is just the definition of the operator Ĥ. We can apply
the Schrödinger equation to a unitary U(t) to find that

ĤU(t, t0) |ψ(t0)⟩ = iℏ
d

dt
U(t, t0) |ψ(t0)⟩ . (13)

We can then remove |ψ(t0)⟩ from this expression, resulting in

ĤU(t) = iℏ
d

dt
U(t) (14)

which has the solution

U(t) = e−iĤt/ℏ (15)

We can therefore use the Hamiltonian operator of the system to describe its time evolution.

1.3 Composite systems and interaction

When describing a quantum system, it may have distinct components that feature their own, independent Hilbert
spaces. To describe the full composite system from the Hilbert spaces of the subsystems, the tensor product is used,

HAB = HA ⊗HB . (16)

Not all composite systems can be considered as a tensor product between its components. Those that can be are
called product states. Consider the example of the Bell state, defined as

1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩) = 1√

2



1
0
0
0

+


0
0
0
1


 =

1√
2


1
0
0
1

 . (17)

Because there is no possible way of generating the last matrix from a tensor product of |0⟩ and |1⟩ states, it isn’t a
product state.
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Figure 1: A scenario of two independent subsystems in a composite system. Each subsystem would has its own
Hilbert space in isolation so we must describe the full system by HAB = HA ⊗HB .

If you had a composite system of two particles, one of which was in the state |u1⟩ while the other was in state |v1⟩,
the state of your composite system would just be |u1⟩ ⊗ |v1⟩. Similarly, if one particle was in state α1 |u1⟩+ α2 |u2⟩
and the other was in state β1 |v1⟩+ β2 |v2⟩, your composite system would be in the state

(α1 |u1⟩+ α2 |u2⟩)⊗ (β1 |v1⟩+ β2 |v2⟩) (18)

= α1β1 |u1⟩ ⊗ |v1⟩+ α1β2 |u1⟩ ⊗ |v2⟩+ α2β1 |u2⟩ ⊗ |v1⟩+ α2β2 |u2⟩ ⊗ |v2⟩

That is, if we were told that the state of a composite system of two qubits was either in |u1⟩⊗ |v1⟩ or α1β1 |u1⟩⊗
|v1⟩ + α1β2 |u1⟩ ⊗ |v2⟩ + α2β1 |u2⟩ ⊗ |v1⟩ + α2β2 |u2⟩ ⊗ |v2⟩, we would be able to work backwards to determine the
exact state of each individual particle in the subsystem. These two examples of composite systems exist in product
states since, given the full state HAB , we are able to rewrite this composite system as a product of its components’
Hilbert spaces, HA ⊗HB to individually tell us about the Hilbert spaces of each particle, HA and HB .

When a composite state can’t be expressed as a product state, it is called an entangled state. If a composite
system is in an entangled state, it isn’t always possible to assign state vectors to the individual subsystems. Consider
the scenario if we were told that a composite of two subsystems, where the subsystem has basis states |u1⟩ , |u2⟩ and
the second has |v1⟩ , |v2⟩, was described by the state

|u1⟩ ⊗ |v1⟩+ |u2⟩ ⊗ |v2⟩ . (19)

There is no way of representing the state of the individual subsystems given this composite system state; we can’t
write anything of the form

|u1⟩ ⊗ |v1⟩+ |u2⟩ ⊗ |v2⟩ = (. . . )|u⟩ ⊗ (. . . )|v⟩ (20)

to inform us of what the individual components’ quantum states look like. This is what we mean by an entangled
state. We can’t separate states of an entangled composite system to just the components of the individual subsystem
states. We cannot separate entangled states in this way because they are sharing states with each other.

This is where quantum mechanics clearly diverges from classical mechanics; to describe a composite system in
classical mechanics, you would need to specify the state of each component, such as their position and momentum.
We are now saying that to describe a quantum system, you don’t need information about the exact state of the
subsystems; in fact, you can’t always have it. To describe a system made up of multiple particles, we don’t need
to and often can’t specify the state of each particle, as is necessary in classical mechanics, in order to describe a
composite system.

We define a system to be non-interacting if the composite Hamiltonian is just the sum of the subsystem Hamil-
tonians:

HAB = HA +HB . (21)

This tells us that subsystems are not interacting if the sum of their total energies equals the total energy of the
composite system. If the subsystems are interacting, they may share some energy, meaning that HAB < HA +HB .
(it’s not ever the case that HAB > HA +HB, right?)

1.4 Density operators and their time evolution

When subsystems are entangled, it is often not possible to write down a complete wavefunction |ψ⟩ for each of them.
Entangled subsystems are capable of sharing and exchanging states with each other so it’s not possible to describe
the state of a subsystem as being identical to the subsystem’s wavefunction in isolation. Entanglement requires that
each subsystem carries information about other subsystems.
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To describe the state of an entangled quantum system then, we need to first describe the full system as a mixture
of states provided by the subsystems. The set of states describing a composite system don’t need to be orthogonal to
or independent of each other since its subsystems may share states in isolation. To account for a composite system’s
mixed states |ψi⟩⟨ψi| and their probabilities pi, the density matrix

ρ =
∑
i

pi|ψi⟩⟨ψi| (22)

is defined to describe the state of a composite quantum system.
For an example that will be useful later, {1, σX , σY , σZ} forms a basis for a qubit system (which has a two-

dimensional Hilbert space). Due to the requirement that a valid density operator satisfies Tr[ρ] = 1, and because
Tr[1] = 1 and Tr[σi] = 0, we can write any density matrix for a qubit system in the form

ρ =
1

2
(1 +

∑
i

aiσi). (23)

Given ρ, you can determine the ai values by using

ai = Tr[ρσi]. (24)

Because we stated a wavefunction evolves by a unitary operator

|ψ(t)⟩ = U(t) |ψ(0)⟩ , (25)

pure state density matrices, ρ(t) = |ψ(t)⟩⟨ψ(t)|, will evolve by

ρ(t) = U(t)ρ(0)U†(t). (26)

To find the differential equation governing the a pure state’s motion, we take

d

dt
ρ =

d

dt
(|ψ⟩⟨ψ|) = d |ψ⟩

dt
⟨ψ|+ |ψ⟩ d ⟨ψ|

dt
(27)

and since we said that

Ĥ |ψ⟩ = iℏ
d

dt
|ψ⟩ (28)

from the Schrödinger equation, we have that

dρ

dt
=
i

ℏ
Ĥ |ψ⟩ ⟨ψ| − i

ℏ
|ψ⟩⟨ψ|Ĥ ≡ − i

ℏ
[Ĥ, ρ]

=⇒ iℏ
dρ

dt
= [Ĥ, ρ],

(29)

which is called the Von Neumann equation of motion.

2 Open QM

2.1 Open system dyanamics

The previous material considered quantum mechanics in a closed system; one which has no interactions with its
environment. In such a situation, we can either define a full wavefunction or density matrix for the state of the
system and evolve it in time with the tools described previously. Though the assumption that a system will not
interact with its environment can occasionally be safe to make, we know it slightly misrepresents the underlying
physical phenomenon at best and is completely inadequate to describe scenarios where a quantum system has a
high degree of interaction with its environment at worst. We know that most realistic quantum mechanical systems
do interact with their environment so it’s crucial to develop the theory of systems that are allowed to have this
interaction. These systems are called open and we have already covered the primary tool for describing the state of
a system embedded in an environment it is interacting with, the density matrix.

To describe open quantum systems, we have to assume that the environment it’s embedded in is itself a closed
system, which is again a limiting assumption but is not nearly as inaccurate as assuming that the system itself is
closed. If there is no initial interaction between the system and environment, we know we can represent the full
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ρE(i)

ρS(i)

ρSE
(i) = ρS(i) ⊗ ρE(i)

Figure 2: An open system embedded in a closed environment. There is assumed to be no initial entanglement or
interaction between the system and environment, so we can write the initial state as a tensor product ρSE

(i) = ρS(i)⊗ρ
E
(i).

system + environment state as a tensor product: Exactly as we began describing the time evolution of density
matrices in the previous section, we can describe the time evolution of the full system + environment with some
unitary acting on the initially unentangled state:

ρSE(t) = U(t)
(
ρS(i) ⊗ ρE(i)

)
U†(t). (30)

Given this, we may only wish to describe the time evolution of the system instead of describing how the state of
the system and environment evolve. To do this, we take the partial trace over the environment of the previous
expression, which sums over all possible states of the environment, effectively averaging their effect on the system
out. Let {ψi} be the set of basis states for the environment and let the initially pure state of the environment be
ρE(i) =

∑
j |ψj⟩⟨ψj |. Then computing the partial trace results in

ρS(t) = TrE

(
U(t)

(
ρSE
(i)

)
U†(t)

)
= TrE

(
U(t)

(
ρS(i) ⊗ ρE(i)

)
U†(t)

)
=
∑
i

⟨ψi|U(t)
(
ρS(i) ⊗ ρE(i)

)
U†(t) |ψi⟩

=
∑
i

⟨ψi|U(t)

ρS(i) ⊗∑
j

|ψj⟩⟨ψj |

U†(t) |ψi⟩

=
∑
i,j

⟨ψi|U |ψj⟩ ρS(i) ⟨ψj |U† |ψi⟩ .

(31)

What’s typically done here is to define Kα := ⟨ψi|U |ψj⟩, called Kraus operators, so we can express this more
compactly as

ρS(t) =
∑
α

Kαρ
S
(i)K

†
α (32)

where, again, {|ψi⟩} is the set of basis states of the environment which are being averaged over and {|ψj⟩} is the
initial state of the environment.

It’s important to recognize that Kraus operators are not necessarily unitary (K†
αKα = 1 isn’t always true for a

specific α) but ∑
α

K†
αKα = 1 (33)

must be true. Consider the amplitude damping channel, which models energy dissipation of a system such as a
photon being spontaneously released from the system. The Kraus operators for this single qubit channel are defined
as

K0 =

(
1 0
0

√
1− p

)
, K1 =

(
0

√
p

0 0

)
(34)

and one can show by computation that K†
0K0,K

†
1K1 ̸= 1 but K†

0K0 +K†
1K1 = 1.

This is important to mention because the non-unitarity of Kraus operators mean that we are now capable of
describing processes which are non-unitary. Non-unitary processes describe situations where initially unentangled
states become entangled and your system can now freely interact with its environment.
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A mapping that takes an intial state of a quantum system to a later state in time, regardless of whether or not
that mapping describes unitary evolution or not, is called a quantum channel, typically denoted as Λ[ρ]. So we have
that

ΛS [ρ
SE
(i) ] =

∑
α

Kαρ
S
(i)K

†
α = ρS(t) (35)

where ΛS [·] is used to indicate that we trace out the environment in this mapping. This is demonstrated in the
following figure:

ρE(i)

ρS(i)

ρSE
(i) = ρS(i) ⊗ ρE(i)

ΛS [ρ
SE
(i) ]

ρS(t)

Figure 3: An initially unentangled system and environment ρSE
(i) is allowed interact and become entangled after a

quantum channel ΛS [ρ
SE
(i) ] is applied to extract the dynamics of the system ρS(t).

2.2 NCP maps

In arriving at the Kraus representation for the map ΛS [ρ
SE ] = ρS(t) which was capable of averaging over the influence

of the environment so that we could describe the dynamics of just the system, we had to assume that ρSE
(i) = ρS(i)⊗ρ

E
(i),

meaning that the system and environment were assumed to be initially unentangled. For this scenario, the resulting
density matrix ρS(t) will always be a valid quantum mechanical state. We must revisit the assumption that the
initial state of the system and environment is unentangled since we can imagine a scenario where a system and some
part of its environment are entangled before one applies a map. In light of the eventual direction of this work, we
will turn to considering a universe made up of four qubits, illustrated in the following figure: In Fig. 4, we consider

Universe

Q1 Q2

Q3 Q4

Figure 4: A universe made up of four qubits that will motivate our discussion.

our system to be Q1 and its environment to be Q2,Q3, and Q4. In deriving ΛS [ρ
SE
(i) ], we made the assumption that

the system and environment were initially not interacting and we could express the initial state as a product state.
A unitary was then applied to act on and therefore entangle Q1 and Q2 and we arrived at the time evolution of the
system from tracing over the effect of Q2 on Q1. The story changes if one of our newly-added qubits, Q3 or Q4, are
initially interacting with Q1. It’s clearly the case that Q1 is not entangled with Q2,Q3, or Q4 before U1 is applied
to Q1 and Q2. Because our universe is made up of these four qubits which are initially unentangled, given U1, we
can derive ΛS [ρ

SE
(i) ]. Because there is no initial correlation between our system, Q1, and our environment, the rest

of the three qubits, ΛS [ρ
SE
(i) ] will always return a valid quantum state for ρS(t) since our initial state for the entire

circuit can be written as ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ ρ4. If are only interested in describing the dynamics of Q1, there is initially
no action on Q3 and Q4 so we may write this as

(ΛQ1 ⊗ 1Q3 ⊗ 1Q4) (ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ ρ4) = Λ1[ρ
12
(i)]⊗ ρQ3 ⊗ ρQ4 . (36)
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Q1

U1

Q2

U3

Q3

U2

Q4

Figure 5: The brickwork circuit that will help us emphasize why we must remove the assumption that the system
and environment are initially unentangled in order to derive dynamical maps.

However, looking at the second layer of this circuit, it becomes clear why we need to remove the restriction of
the initial state of our system and environment be unentangled. Before U3 is applied to Q3 and Q4, there is clearly
entanglement between Q2 and Q1 due to the previous layer. If we therefore look to evolve Q2 in time, treating it as
the system and the rest of the qubits as the environment, and we make the same assumption as before that we can
write

(ΛQ2
⊗ 1Q1

⊗ 1Q4
) (ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ ρ4) = Λ2[ρ

23
(i)]⊗ ρQ1

⊗ ρQ4
, (37)

this mapping will not result in a valid output state since there is now actually some entanglement between the system
and environment and we can’t write the action of this map as a tensor product, Λ2[ρ

23
(i)]⊗ ρQ1 ⊗ ρQ4 . Because Q1 is

entangled with Q2 before the unitary is applied to Q2 and Q3, the derived map Λ2[ρ
23
(i)] will also impact the state of

Q1 (and Q4 for the same reason), meaning Λ2[ρ
23
(i)]⊗ ρQ1

⊗ ρQ4
will not result in a valid state.

We must therefore strengthen our definition of what it means for a map to return physical quantum states. If a
system is embedded in a universe with d other subsystems, and upon applying a map ΛS to the system and leaving
all other subsystems unchanged, if ΛS ⊗1(d) for all d values, then the map is said to be completely positive (CP).
If a map is not CP, there exists some entanglement between your system and at least one of your subsystems, which
is why assuming a tensor product state will not always result in a valid output quantum state of your system after
the map is applied. The map is called Not Completely Positive (NCP) map in this case. Given an NCP map, one can
freely tweak the parameters that show up in the map to find conditions on them that do result in a valid quantum
state. The range of parameter values of the mapping that result in valid quantum state outputs is called the Domain
of Positivity (DOP). It follows that a CP map’s DOP is all possible values of the map’s parameter space.

2.3 Derivation of the Lindbladian

In the previous section, we considered the time evolution of the state of a system, represented as ρS , which openly
interacted with a closed environment, ρE . We represented the composite of the system and environment with a
tensor product, ρSE = ρS ⊗ρE . Since we specified that the full system and environment was closed, we were allowed
to assume that ρSE would evolve unitarily and we could then specifically describe the state and its time evolution
of the system by tracing out the environment; ρS = trE(ρ

SE).
All of this had assumed that we were capable of knowing the entire density matrix of the environment ρE , which

is not often a reasonable assumption given that a quantum system can have a large number of interactions. For this
reason, it is desirable to arrive at a way of describing the time evolution of ρS individually, without assuming we
know what ρE looks like. Since we are considering an open system, we know that it will not evolve unitarily so we
must approach this problem from another direction.

To develop a differential equation for the time evolution of any system, one needs to assume that the state at t+dt
is entirely determined by its state at t. A system that satisfies this condition is called Markovian. In proceeding with
developing a way of describing the time evolution of an open system, we would also like to relax the assumption of the
quantum mechanical state undergoing a Markovian process. Just as when only considering an interacting system as
opposed to the full system and environment we had to remove the assumption of unitary time evolution, removing the
assumption of its evolution being Markovian is reasonable to consider. In fact, the fluctuation-dissipation theorem
tell us that information leaving a system into its environment must always flow back, meaning the state of our system
might be influenced by one of its previous states at some later time.

Despite these theoretical concerns, there are scenarios where a system can be treated as Markovian in practice
by making a Markovian approximation. (should detail this more here)
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Recall that the time evolution of canonical variables p and q can be determined by just taking the Poisson bracket

of it with the Hamiltonian of the system, written as H = p2

2m . The Poisson brackets are generally defined as

{Q1, Q2} :=
∂Q1

∂x

∂Q2

∂p
− ∂Q1

∂p

∂Q2

∂x
. (38)

so with straightforward computation, one finds that

{x,H} =
∂H

∂p
=

∂

∂p

(
p2

2m
+ U(x)

)
=

p

m
≡ dx

dt
(39)

and

{p,H} = −∂H
∂x

=
∂

∂x

(
p2

2m
+ U(x)

)
= −∂U

∂x
≡ F =

dp

dt
. (40)

In general, we find that the Poisson bracket of any state variable Q, such as position and momentum, with the
Hamiltonian allows us to describe its time evolution, {Q,H} ≡ dQ

dt .
It is for this reason that we would like to develop a generalized Hamiltonian that may be applied to open systems.

With such an object, we could arrive at the time evolution of the state of an open in a similar fashion without needing
to assume full knowledge of the environment, as was done in the previous section.

Recall that the differential equation
dv

dt
= Av (41)

with the initial condition v(0) = 0, which is an element of some vector space V and where A is some linear operator
that takes A : V → V has the general solution

v(t) = eAtv(0) (42)

where we can describe the exponetiation of a matrix by its Taylor series expansion, eA =
∑∞

n=0
An

n! .
In the Schrödinger equation, V ⊆ H and A = −iH. We then have the differential equation

dv

dt
= −iHv (43)

which has the general solution
v(t) = e−iHtv(0) (44)

This scheme works for density matrices as well, where A is instead the superopertor (a linear operator that acts on
other linear operators... since ρ itself is a linear operator) −i[H, ·], which maps −i[H, ·]/ : ρ→ ρ. We then have the
differential equation

dρ

dt
= −i[H, ρ]ρ(0) (45)

which has the solution
ρ(t) = eiHtρ(0)e−iHt (46)

For the case of an open system, we therefore want a superoperator which generalizes the Hamiltonian, called
the Lindbladian L, and maps density matrices to density matrices of the system. We are looking for a L in the
differential equation

dρ

dt
= L[ρ] (47)

which would have the general solution
ρ(t) = eLtρ(0). (48)

Recall that every completely positive operator and superoperator E has the operator sum representation (Kraus
form) given by

ρ(t+ dt) = Edt(ρ(t)) =
∑
µ

⟨eµ|USE |e0⟩ ρS ⟨eµ|U†
SE |e0⟩ (49)

where {eµ} is the orthonormal basis for HE , so |e0⟩ is the state of the environment before the interaction takes place.
If we define Mµ := ⟨eµ|USE |e0⟩, which represents the averaging over the effects of the environment as it transitions
from |e0⟩ to |eµ⟩, we have that every operator and superoperator can be expressed as

Edt(ρ(t)) =
∑
µ

MµρEM
†
µ. (50)
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We can therefore represent

ρ(t) = eLtρ(0) =
∑
µ

MµρEM
†
µ. (51)

We can then approximate ρ̇(t) by:

ρ̇(t) = lim
dt→0

ρ(t+ dt)− ρ(t)

dt
=⇒ ρ(t+ dt) = ρ(t) + ρ̇dt (52)

with the Markovian assumption.
This can again be represented in the operator-sum form:

ρ(t+ dt) = ρ(t) + ρ̇dt =
∑
µ

Mµρ(t)M
†
µ. (53)

Because we have ρ(t) + ρ̇dt =
∑

µMµρ(t)M
†
µ, it must be the case that I DON’T GET THIS ARGUMENT Mµ

be equal to the identity to zeroth order, be of order
√
dt, or both. Combining these assumptions with the idea that

Mµ, µ > 0 will describe the quantum jumps the system may undergo with probability dt, we must have that

M0 = 1+O(dt)

Mµ =
√
dtLµ, µ ∈ N.

(54)

I ALSO DON’T UNDERSTAND WHAT THE L’S ARE... where the Lµ terms are called jump operators.
Since every matrix can be rewritten into a Hermitian and ant-Hermitian part, we can re-express M0 as:

M0 = 1+ (−iH +K)dt (55)

where H is Hermitian and K is anti-Hermitian don’t fully understand why this separation is being done
other than for utility in the proof...

We first use the normalization condition of the operator-sum representation,

1 =
∑
µ≥0

M†
µMµ, (56)

to show that
1 = [1+ (−iH +K)dt] [1+ (iH +K)dt] + dt

∑
µ>0

L†
µLµ

= 1+ 2Kdt+ dt2(−iH +K)(iH +K) + dt
∑
µ>0

L†
µLµ

(57)

and since the (−iH +K)(iH +K) is of order dt2, we may approximate this to go to zero since dt is already a small
number. We then have that:

0 = 2Kdt+ dt
∑
µ>0

L†
µLµ =⇒ K = −1

2

∑
µ>0

L†
µLµ. (58)

With this expression for K, we may now take a look at M0ρM
†
0 again:

M0ρM
†
0 = [1+ (−iH +K)dt] ρ [1+ (iH +K)dt]

= [1+ (−iH +K)dt] [ρ+ ρiHdt+ ρKdt] .
(59)

Again assuming O(dt2) ≈ 0, we get:

M0ρM
†
0 = ρ+ ρiH − iHρ+Kρdt+ ρKdt. (60)

Recalling the expression for the commutator, [a, b] = ab− ba, we can simplify this into:

M0ρM
†
0 = ρ− i[H, ρ] + dt(Kρ+ ρK). (61)

Note that when the system is isolated, the K term would go to zero and we would be left with the usual time
evolution of a density matrix, the Von Neumann equation.
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Since we now have an expression for M0ρM
†
0 and we have defined Mµ =

√
dtLµ for µ > 0, we can determine the

full expression of MµρM
†
µ for µ ≥ 0:

MµρM
†
µ = ρ+ dt

[
−i[H, ρ] +Kρ+ ρK +

∑
µ>0

LµρL
†
µ

]

= ρ+ dt

[
−i[H, ρ] +

∑
µ>0

LµρL
†
µ − 1

2
L†
µLµρ−

1

2
ρL†

µLµ

]
.

(62)

Using the definition of the anti-commutator, we have:

MµρM
†
µ = ρ+ dt

[
−i[H, ρ] +

∑
µ>0

LµρL
†
µ − 1

2
{L†

µLµ, ρ}

]
. (63)

Finally, since we said that ρ(t) + ρ̇dt =
∑

µMµρ(t)M
†
µ, we now have an expression for ρ̇:

ρ̇ ≡ L[ρ] = −i[H, ρ] +
∑
µ>0

LµρL
†
µ − 1

2
{L†

µLµ, ρ} . (64)

What we have derived is called the Lindbladian.
This is generalized to include decoherence rates γµ in the GKSL form:

L[ρ] = −i[H, ρ] +
∑
µ>0

γµ

(
LµρL

†
µ − 1

2
{L†

µLµ, ρ}
)

(65)

Key difference between Lindbladian and quantum channels: While the Lindbladian and quantum chan-
nels both describe the time evolution of a quantum state, the Lindbladian describes the continuous time evolution
of the state with a differential equation while quantum channels describe the discrete time evolution of the state in
terms of a mapping that has certain properties.

2.4 Non-Markovian Maps

There has been a recent increase of interest in developing dynamical maps for non-Markovian processes. Recall that
when deriving the Linbladian, we made the assumption that the evolution of the quantum state was Markovian,
meaning that the state ρ(t + dt) only depended on ρ(t) as opposed to also depending on ρ(t − ϵ) for some ϵ. In
the previous section, we described why we know that this assumption of quantum state evolution as Markovian is
not theoretically realistic. We know it is likely that some information that leaves a system in a closed environment
will eventually re-enter it given enough time. Such a situation would violate the assumption of the system evolution
being Markovian and is why developing non-Markovian maps is an important task, especially with the development
of quantum computation and quantum information. This is illustrated in Fig. 6:

To develop a dynamical quantum channel that does not assume a Markovian process, one needs to introduce
some simplifying assumptions, typically in the form of a symmetry. A covariant quantum channel is one of these
channels.

Definition 2.1 (Covariant Quantum Channel). Consider a finite group G along with its two unitary representations
Uk on Hilbert spaces Hk, k = 1, 2 and a completely positive (CP), trace-preserving map Λ : B(H1) → B(H2). Λ is a
covariant quantum channel with respect to U1 and U2 if

Λ[U1(g)ρU
†
1 (g)] = U2(g)Λ[ρ]U

†
2 (g) ∀ ρ ∈ B(H1) & g ∈ G. (66)

Note that B(H1) represents bounded linear operators on the Hilbert space of system one (I’m pretty sure...).
An important example of covariant channels are called phase-covariant qubit maps, which are covariant with

respect to the operator U(ϕ) = e−iσzϕ ∀ ϕ ∈ R.
Connection between NCP maps and non-Markovianity: CPmaps rely on the assumption of the underlying

process being Markovian; meaning that the process is memoryless (that the current state of the system can only be
effected by the immediately previous state of the system and not its state some other amount of time ago). When a
process is non-Markovian, you must use NCP maps to describe the dynamics of the system.
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t = 0

ρ(t0)

t = 1

ρ(t1) . . .

t = k

ρ(tk)

Figure 6: Information contained in the orange quantum system escapes to the environment at time t = 0. We state
evolve the system using a regular dynamical quantum channel, such as the Linbladian defined above, which depends
on the assumption that the state of the system ρ(t + dt) only depends on its immediately previous state ρ(t). The
state evolves as a Markovian process for some time before this information re-enters the system at time t = k. Notice
that the state of the system at ρ(k) no longer depends on ρ(k − dt); it also depends on the state of the system
ρ(t0) when this information was released. This common occurrence in realistic quantum system demonstrates the
necessity for the development of dynamic quantum channels that do not depend on the assumption of the evolution
being Markovian.

Note that we also assumed that Λ(0) = 1 when developing dynamical maps that relied on the Markovian
assumption, meaning that we assumed there was no initial correlation between the system and environment until
t > 0 (this led us to develop a CP map). If this is not the case; that if the system and environment are truly always
correlated and we can’t apply this assumption, then we may need to use an NCP map to describe the temporal
dynamics of the system.

Another violation of Complete Positivity can arise if a transform that’s applied to the system is correlated with
the state of the system.

3 Bipartite and Multipartite Entanglement

3.1 Bipartite Entanglement

3.2 Multipartite Entanglement


