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Abstract

In this work, we consider the influence of adding additional structure to the cosmic

microwave background’s (CMB) power spectrum. The standard cosmological paradigm,

called the Lambda Cold Dark Matter (ΛCDM) model, writes the power spectrum for

primordial perturbations that ultimately gave rise to the CMB as a simple power law,

characterized by two parameters. We introduce additional structure into the CMB by

including power spectra for simple fields, specifically a random circle field of uniform

radii and a random line field, originally derived from a materials science motivation.

We simulate the Cℓ spectrum generated by both of our power spectrum modifications,

quantify the strength of fit to observed CMB data from the Planck satellite, and compute

Bayes factors of each to determine if the increased fit that results is significant. We find

that both modifications allow for a strengthened fit to the CMB data over the ΛCDM

model, but determine that such a fit is not significant. This allows us to conclude that,

given our current observational data, it is highly unlikely that a field of random circles

with uniform radii or a field of random lines is present in the correlations of the CMB.
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1 Introduction

The cosmic microwave background (CMB) has been an incredibly rich resource of observa-

tional data for constraining models of the early universe and their parameters. A thorough

understanding of the cosmic microwave background gives us a confident picture of the early

universe, and may even offer indirect observational evidence of theories of quantum gravity.

In the standard cosmological picture, called the Lambda-Cold Dark Matter model, the CMB

data is fit well with a very simple set of parameters. This model has been successful in de-

scribing our current observations of the CMB, but it could always be the case more complex

behavior will be discovered upon a finer observation of this field. It is therefore important to

give consideration to models with additional parameters which may later receive theoretical

justification for.

In this work, we consider modifications to the standard cosmological model by including

effects from power spectra that go beyond the simple power law of ΛCDM, partially moti-

vated by results which have claimed that more complicated structure in the CMB does exist

[1, 2]. In introducing new models with additional parameters, one should always be sure to

justify that such modifications provide an enhancement in fit to observed data above what

would be expected from the inherent additional complexity of the model. In this work, we

therefore give attention to whether or not the observed CMB data justify these modifications,

even if they do result in a better fit than the standard cosmological paradigm.
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2 Background Material

Before proceeding to the body of this work, we must define the necessary ingredients. We

first define the mathematical tools that will be used for introducing our modifications to the

CMB in Section 2.1, briefly cover the relevant cosmological physics in Section 2.2, then close

by defining the mathematical tools that will allow us to generate an optimized modification

and determine whether or not such a fit is significant enough to make positive claims about

the existence of our added complexity in Section 2.3.

2.1 Correlation Functions and Power Spectra

The two point correlation function ξ2(∆r) between two points r and r′ is defined as the

expectation value of the field evaluated at two separate points;

ξ2(∆r) = ⟨ϕ(r)ϕ(r +∆r)⟩ . (1)

Given some point r0 in a field ϕ(r), the two-point correlation function tells you how sta-

tistically likely you are to find the same field value at a separate point r0 + ∆r above the

mean field value. For a completely uncorrelated field with mean field value ϕ̄, the correlation

function becomes1

ξ2(|ri − rj|) = ⟨ϕ(ri)ϕ(rj)⟩ = δij − ϕ̄2.

In other words, knowing ϕ(ri) tells us no information about ϕ(rj), which is the definition of

an uncorrelated, or a random, field.

In contrast, the two-point correlation function for a completely uniform field ϕ0 just returns

zero, since any point on the field has no statistical correlation to any other point above the

mean field value.

The two-point correlation function, expressed in Eq. (1), can be defined using the spatial

1See Appendix A for the derivation.
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integral definition of the expectation value, which gives us

ξ2(∆r) =
1

V

∫
V

ϕ(r)ϕ(r +∆r) dx. (2)

If we are given a correlation function for a field and instead want to arrive at its power

spectrum, which is a tool that tells us how a field’s power is distributed over frequency, we

take the inverse Fourier transform of (2) to find

P (k) =
1

(2π)3

∫
ξ2(r)e

ik·rd3r, (3)

which is derived in Appendix B.

This expression for the power spectrum is currently expressed in Cartesian coordinates.

Since our field of interest, the CMB, is ultimately spherical as will be explained in Section

2.2, we now express the power spectrum in spherical coordinates;

P (k) =
2

(2π)2k

∫ ∞

0

ξ2(r) sin(kr)dr, (4)

which is derived in Appendix C.

This relationship between a given correlation function and its power spectrum will be

crucial to the body of this thesis, as it allows us to arrive at power spectra in spherical

coordinates from known correlation functions.
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2.2 Cosmological Physics and the Cosmic Microwave Background

Radiation

The theory of cosmic inflation, the leading class of models that describe the very early phase

of our universe’s development2, was originally posed in 1981 [3] as an alternative to the

standard big bang model, motivated by the standard theory’s flaws that become present

when one extrapolates it back to very early times. Inflationary cosmology posits that the

early universe underwent a period of exponential expansion driven by the dynamics of a

scalar field ϕ(r, t), called the inflaton. Under inflation, the scale of the universe increased

by an enormous amount during this very early period, expanding by a factor of 1050 times

greater than what is predicted by the standard big bang model [7].

Inflationary cosmology tells us that the inflaton field ϕ(x, t) began as a quantum field,

subject to quantum fluctuations. These fluctuations, in combination with a repulsive grav-

itational force, is ultimately what gave rise to our universe under inflation. Quantum fluc-

tuations normally exist on imperceptible scales, but through the mechanism of inflation,

these primordial fluctuations were rapidly stretched to astronomical scales, eventually be-

ing “frozen in” as classical density perturbations δρ(x) which formed the seeds for cosmic

structure and the later development of life.

The first light released from the universe, called the cosmic microwave background ra-

diation (CMB), was first serendipitously discovered in 1964 by Arno Penzias and Robert

Wilson [8] at Bell Telephone Laboratories. Many telescopes and observational facilities have

since been built to more precisely measure this radiation, with the first, called the Cosmic

Microwave Background Explorer (COBE), telescope launched in 1989 [9]. Although Penzias

and Wilson’s first observation of the CMB revealed a near perfectly uniform field of radia-

tion, our continued precision in observational measurement of this light has slowly revealed

its non-uniformity. We have since discovered that the CMB’s radiation follows a Gaussian

distribution to a high degree of certainty, though there are theoretical motivations for the

2See [3, 4, 5, 6] for foundational papers in the theory of inflation.
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radiation to ultimately be non-Gauassian. Fig. 1 demonstrates how the increased precision

in CMB measurements have revealed this field’s Gaussianity.

Figure 1: The cosmic microwave background field as measured by COBE in 1990 [10],

WMAP in 2003 [11], and the Planck satellite in 2018 [12] demonstrate the slow emergence

of this field’s Gaussianity. The temperature of the CMB is plotted by color in this figure.

Note these maps are spherical, meaning the CMB radiation is the 2D surface formed from

a sphere centered around the Earth. These maps are analogous to how the Mercator map

projects the Earth’s geography onto a 2D plot.

This non-uniformity of the CMB is subject to a great deal of attention in physics and

astrophysics, as these fluctuations were ultimately caused by the quantum mechanical nature
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of the early universe, which has statistical uncertainly inherently built into its nature. As

such, the CMB is our only current observational probe of the early state and development

of the universe3. When one creates models for the CMB, assumptions of the nature of the

early universe’s radiation field, and ultimately the nature of inflation, are therefore baked

into the models.

To model the CMB, it is standard for one to plot the angular power spectrum Cℓ as

a function of multipole moments ℓ, which describes how the radiation is distributed over

different angular scales. The multipole moments ℓ are the angular analog of wavenumbers

k, which tell you how many ripples fit on a 360
◦
around the sky.

In this thesis, we will be generating power spectra from known correlation functions. In

order to introduce the influence of these power spectra, which live in flat Euclidean space,

on the angular power spectrum of the CMB, we must use the relationship

Cℓ =
4π

(2π)3

∫
P (k)j2ℓ (kr) dk, (5)

which tells us how to project a power spectrum from flat space onto the surface of a spherical

object. This projection is derived in Appendix D.

In standard inflationary cosmology, the power spectrum that generates the CMB fluctu-

ations, called the primordial power spectrum and denoted as P(k), is modeled as a power

law with free amplitude A and spectral index ns parameters:

P(k) = As

(
k

k0

)1−ns

. (6)

For future relevance, it is important to notice that this power spectrum is unitless. From

modern CMB observations, we have determined As = 2.09681× 10−9 and ns = .965 [15].

3Though there has been work on what new information and constraints the observation of gravitational
waves from this era, called primordial gravitational waves in the literature, would bring. For example, see
[13, 14]
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2.3 Bayesian Analysis

The Bayesian interpretation of statistics states that the probability of a variable of interest

quantifies our uncertainty about it, rather than representing the frequency of specific values

of this variable that is taken on, as is the interpretation taken by frequentist statistics. Since

probability is a variable’s uncertainty under the Bayesian philosophy, it is said to represent a

measure of our belief about this variable. In probability being a measure of our knowledge of

a variable, it follows that probability is not only relies on the result of repeated experiments

in which the variable’s value is observed, but also includes the effect of what we believe the

variable’s value to be. In this way, Bayesian statistics allows one to fluidly update their

knowledge of a variable upon multiple observations of data that constrain the variable’s

range of possible values.

Because we often have theoretical predictions for values that variables of interest in physics

could take on, it is very common to employ Bayesian methods that make use of these, since

they often constrain the space of parameter values. The framework of Bayesian analysis

results in a final probability distribution for variables of interest, which is of great interest

to physicists. Bayesian statistics is found widely in physics, especially in contexts where

observational data is incoming, and models need to be constantly updated in accordance

with a continuing observation of data.

Bayes theorem, the foundation of Bayesian statistics, is stated as

P (Θ|D) =
P (Θ)P (D|Θ)

P (D)
. (7)

Where P (Θ), called the prior distribution, represents our prior hypothesis about our param-

eters of interest Θ. When we have no knowledge about our parameters Θ, a constant prior

distribution is chosen since this equally weights all possible parameter values.

P (D|Θ) is called the likelihood, which represents the probability of generating the observed
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data D given model parameters Θ and is often written as L(Θ)4.When measurements made

to construct the data are made up of random, independent samples, the central limit theorem

is used to state that the likelihood for these processes should be a Gaussian distribution;

L(Θ) ∝ exp

(
−
∑
i

(
Di −Mi

)2
2σ2

i

)
, (8)

Because the Planck data provides asymmetric bounds on the uncertainty in Cℓ, with a lower

bound error of −δℓi and an upper bound error of +δℓi for every ℓ value in the Cℓ spectrum,

which is the function we ultimately seek to fit, we compute the variance in evidence as

σ2
i =

(+δℓi)
2 + (−δℓi)

2

2
.

P (D) is called the evidence, which represents the probability of seeing the data under all

possible parameter values;

P (D) =

∫
P (D|Θ)P (Θ)dΘ. (9)

The evidence acts as a normalizing factor for the posterior distribution. Sampling techniques

are especially useful when the model parameters make up a high dimensional space, which

makes the integral in Eq. (9) very computationally expensive. A resolution to this problem

will be explained shortly when discussing MCMC sampling.

The result of Eq. (7), the posterior distribution P (Θ|D), represents our updated hypoth-

esis about the parameters of interest upon observation of the data. Achieving a distribution

for each parameter is the goal of Bayesian statistics, for this tells us which parameter values

most likely fit the given data. When the posterior cannot be directly evaluated, it is often

approximated using MCMC sampling.

In greater detail, Monte Carlo methods approximate a distribution by using a Markov

chain to sample from it. The Markov chain takes a stochastic walk around the distribution

4It’s crucial to state that the likelihood is not a probability distribution for parameter values of Θ. It is
a function f(Θ) that quantifies how well the parameters describe the observed data.
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of interest, and therefore approximates its behavior without needing a full analytic expression

for it. This Markov chain Monte Carlo sampling technique is used to approximate distribu-

tions whose behavior is too difficult to represent analytically or computationally expensive

to do so. In the context of Bayesian analysis, MCMC methods are used to approximate the

posterior as P (Θ|D) ≈ P (Θ)P (D|Θ) since the evidence integral, defined in Eq. (9), can

easily become difficult to evaluate given that integrates over all allowed Θ values.

We are allowed to approximate the posterior using MCMC methods, which drop the evi-

dence term, because the sampling technique relies on relative probability ; how the probability

of a randomly chosen point in the P (Θ|D) distribution looks compared to the subsequently

chosen values throughout the sampling process whereas in the full expression of Bayes the-

orem in Eq. (7), P (D) acts as a normalization constant, so the posterior’s probabilities are

normalized and can be compared in an absolute sense.

The final statistical tool to be introduced will allow us to quantify the support for our

models that consider the influence of additional structure in the CMB correlation function.

In considering models that introduce new parameters to fit data that is already well-fit by

more simple models, one must address whether or not the additional parameters are provid-

ing any additional fit that can’t be explained by just the increased degrees of freedom in the

model. This problem of overfitting one’s data is a common concern in physics, and the nec-

essary skepticism towards high-parameter models is best captured in John Von Neumann’s

statement, as relayed by Enrico Fermi [16],

“With four parameters I can fit an elephant, and with five I can make him wiggle

his trunk.”

To avoid positive conclusions about the ability of our models with additional parameters

to better explain the CMB data, we will use another technique commonplace to Bayesian

analysis, called the Bayes factor. The Bayes factor takes the ratio of two competing models’

likelihoods, which will be the standard Lambda cold dark matter model of cosmology and
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the added structure models in our case. The Bayes factor therefore looks like:

K =
P (D|Θmod)

P (D|ΘΛCDM)
. (10)

If our models with additional parameters do result in a better fit to the data than what is

given by ΛCDM that is actually meaningful, the Bayes factor value will be a large number.

Any K > 1 indicates that Θmod will be more preferred by the data than ΘΛCDM . The

strength of this support for a given K value is given here

K Value Strength of Evidence

1− 3.2 Insignificant

3.2− 10 Substantial

10− 100 Strong

> 100 Decisive

Table 1: Bayes factor confidence levels sorted by their support for Θmod’s explanatory power

as compared to ΘΛCDM .

We will now move on to discussing the logic of this thesis in more detail and introduce

the modified power spectra that we will be dealing with.
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3 Procedures

This thesis investigates the influence of additional structure to the primordial power spec-

trum by comparing the resulting Cℓ spectrum of the CMB with observational data from the

Planck satellite, which is openly provided by the Planck Legacy Archive [17]. To include

modifications to the primordial power spectrum, we use Eq. (4) to derive the power spectra

that result from the addition of modifications from two-point correlation functions studied

primarily from a materials science context in the CMB’s field. The two-point correlation

function has been derived for a variety of random fields, such as those of lines and concentric

circles in [18]. After deriving the power spectra that result from these correlation functions,

we will construct a total modified primordial power spectrum Ptot(k) = P(k)+Pmod(k) where

P(k) is the standard primordial power spectrum given in Eq. (6). The Code for Anisotropies

in the Microwave Background (CAMB) Python package [19] will be used to generate the mod-

ified angular power spectra C ′
ℓ that result from our power spectra modifications. Given the

set of modified angular power spectra that result from this procedure for each added ξ2(∆r)

structure, these will then be plotted against the spectrum generated by standard power-law

inflationary cosmology in regards to their fit with Planck’s data.

To determine the goodness-of-fit for these modifications, we will first carry out a Bayesian

analysis on the free parameters of each specific model to find their optimal values. With

optimized Cℓ modifications, a Bayes factor with the ΛCDM model will then be computed to

quantify how likely our modifications explain the observed CMB data beyond the strength-

ened fit that naturally comes from additional free parameters.

To perform Bayesian analysis with the goal of finding the optimal values for the modified

spectrum parameters, which are the density of circles ρ and their radii R in the case of

the identical circle field, we assume uniform priors on both of these parameters since these

parameters are completely original, meaning we have no prior knowledge of what values they

should take. We also assume the likelihood follows the exponential distribution given in Eq.

(8) because CMB measurements are taken randomly and independently.
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Because the likelihood and priors will be computationally evaluated in Python, we use a

MCMC sampler rather than additionally computing the evidence integral, as explained in

the background section on Bayesian statistics. In this work, the Python package emcee will

be used to carry out the Monte Carlo sampling portion of this work.

Finally, to determine how likely these modifications to the primordial power spectrum

better explain the angular power spectrum of the CMB, the Bayes factor, as defined in Eq.

(10), will be computed for each modification.

3.1 Random Uniform Radius Circle Field

Taking the two-point correlation function for a random field of identical circles as derived in

[18],

ξ2(r) =
1

πρr
√
1−

(
r
2R

)2 (11)

where ρ is the density of these circles and R is their fixed radius. Using Eq. (4) to compute

the power spectrum of this field in polar coordinates, we find that

P◦(k) =
1

(2π)2

∫ 2R

0

sin(kr)

πρk
√
1−

(
r
2R

)2dr = 1

(2π)2
R

ρk
H0(2kR)

where the integral’s bounds come from the range of validity for the correlation function to

hold and H0(2kR) is the zeroth-order Struve function.

To generate the modified Cℓ spectrum, we write the full power spectrum as a sum of the

standard power law and the result of the previous expression,

Ptot(k) = P(k) +
1

(2π)2
R

ρk
H0(2kR), (12)

and input this into CAMB’s set initial power function function. Notice that because

the primordial power spectrum is unitless, our modification must be unitless as well. Since k

has units of Mpc−1 and R must be linearly proportional to a distance scale, this requires that
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ρ be proportional to a distance scale, likely megaparsecs, squared. Taking R ∼ [Mpc], this

implies that ρ ∼ [Mpc2], which is not a physically reasonable quantity of a two-dimensional

density. It therefore must be the case that we cannot simply add our modification models

and expect the additional cosmological physics that may be necessary in order to make such

a move to appear in our models. The form of our power spectrum modifications is still

important to consider, though, since we are only missing constant factors on the Pmod(k)

terms that would fix our unit analysis. The question of whether or not modifications to

the primordial power spectrum result in a strengthened, significant fit to observed CMB

data is still open, and providing a confident answer to this question could motivate future

theoretical work to understand how to incorporate these power spectrum modifications so

that cosmological physics is correctly accounted for. We will proceed by assuming that the

additional constant factors that are currently missing are absorbed into ρ for reasons that

will become clear.

3.2 Random Straight Lines

The correlation function for random straight lines in a field is also derived in [18], which is

discovered to be

ξ2(r) =
1

2πρr2
, (13)

meaning we will only have one additional parameter when we consider this modification.

Computing the corresponding power spectrum, we find

P|(k) =
1

(2π)2
1

πρk

∫ ∞

0

sin(kr)

r
dr =

1

(2π)2
1

ρk2
.

Our total power spectrum for the straight line field, including the effect of the primordial

power spectrum, is then

Ptot(k) = P(k) +
1

(2π)2
1

ρk2
. (14)
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Notice that we are again required to give ρ units of [Mpc2] in this modification. To reiterate

the point that was made in the previous section, we assume that the cosmological that may

be absent from the introduction of this modification is absorbed in the ρ factor, primarily

motivated by the fact that ρ is required to take on very high orders of magnitude in order

to produce a reasonable Cℓ spectrum.

To emphasize this point and demonstrate how our modified power spectra of Eq. (12)

and Eq. (14) will affect their resulting Cℓ spectrum, we plot these spectra along with the

standard power-law spectrum in Fig. 2.

Figure 2: The power spectra generated by our random uniform radius circle and random

straight line fields against the standard cosmological power law spectrum. We use ρ = 1×107

Mpc2 for both modified power spectra and use R = 2.5 Mpc for the random circle field. Note

that the low-k oscillations of the random circle field power spectrum become asymptotic at

R ≥ 3 Mpc for our chosen ρ value.
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Notice that we have used ρ = 1 × 107 Mpc2 in order to produce Fig. 2. If ρ is not

taken to be a value on this scale, we cannot produce a valid Cℓ spectrum, so we must force

incredibly high ρ values which wouldn’t make physical sense if ρ were truly representing

a valid cosmological density of our circles and lines. This is our primary motivation for

assuming that the additional cosmological physics that may be necessary to consider, which

is discussed in Section 3.1, is absorbed in our ρ factor.

4 Results

With our modified power spectra, we now wish to determine how the resulting Cℓ spectra

compare against observed CMB data. Given values for the Hubble constant H0, the baryon

density parameter Ωbh
2, the cold dark matter density parameter Ωch

2, the reionization opti-

cal depth τ , and a valid power spectrum, CAMB will generate an angular power spectrum Cℓ

plot that can be directly compared against the observed CMB data from the Planck satellite.

We begin by generating Cℓ spectra for both of our modifications using values for R and

ρ that are randomly chosen, but selected in such a way that CAMB actually converges and

produces a valid spectrum. These initial guesses begin to demonstrate the behavior of our

modified models and is plotted in Fig. 3.
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Figure 3: Plotting the resulting Cℓ spectra for both the random circle and random line field

models against the ΛCDM model and the observed spectrum data from the Planck Satellite.

Parameters for both modified models were chosen arbitrarily, where ρ = 1 × 107 Mpc2 for

both modifications, and R = 2.5 Mpc for the random circle model. Note the similarity of

the two modified models; they are nearly plotted on top of each other in this figure.

It is clear from Fig. 3 that our modifications seem to match the ΛCDM model and

observed CMB data in shape, but there is still a vast difference between the scale of these

models. The following section discusses our process of finding the optimal R and ρ values

to begin determining if such modifications better explain the observed data at a level that

is statistically significant.
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4.1 Results: Random Circle Model

We now wish to find the ρ and R that best fit our data to see if this model results in a

better fit over ΛCDM. To do this, we use Bayesian analysis method outlined in Section 2.3

to construct posterior distributions for R and ρ. Carrying this out results in the corner plot

for these parameters shown in Fig. 6.

Figure 4: Posterior distributions for R and ρ in the uniform-radius random circle field model.

The vertical lines on the marginal distributions represent the most probable values for R and

ρ to best fit the observed CMB data, found by the MCMC sampling algorithm.

From the posterior distributions for R and ρ, we take the most probable value for fitting

the observed data; the maximum value of the marginal probability distributions. We then

use optimized parameters to construct the optimal random circle field Cℓ spectrum and plot
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this against the ΛCDM spectrum and the observed CMB data. Doing so results in Fig. 5

Figure 5: Model generated by optimized R = .652 ± .171 Mpc and ρ = 3.162 × 108 ± 1038

Mpc2 values for the random circle field plotted against LCDM model and Planck CMB Cℓ

data.

It appears that our random circle model fits the Planck data better than the ΛCDMmodel,

especially when it comes to the first peak in the spectrum. To quantify the alignment of our

random circle model in comparison to the ΛCDM model, we compute a χ2 statistic for both,

which is the exponential term of Eq. (8), and compare the two. In doing so, we find that

χ2
circ

χ2
ΛCDM

= .9301,

which tells us that our random circle model does fit the data better than ΛCDM when its

R and ρ parameters are optimized. Discussion of this result and determining the statistical
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significance of this result follows in Section 5.

4.2 Results: Random Line Model

To examine the strength of our random line model, we carry out the same procedure as

with the random circle model for determining the optimal parameters for fitting the CMB

data, although we are now dealing with a model with only one additional parameter, ρ.

Constructing a posterior distribution on ρ for the random line model and approximating

this using MCMC sampling, we find

Figure 6: Posterior distribution for ρ in the random line model.

Using the optimal ρ value for our random line model, we again plot the resulting Cℓ

spectrum against the ΛCDM model and Planck data, resulting in Fig. 7
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Figure 7: Model generated by optimized ρ = 3.162× 108 ± 1038 Mpc2 value for the random

line field plotted against ΛCDM model and Planck CMB Cℓ data. The random lines model

has been made nearly identical to the ΛCDM model, and the overlapping of these spectra is

present in this figure, as the ΛCDM model is hidden behind the random lines model.

We again compute a χ2 factor for this modification and compare it with that of ΛCDM.

In doing this, we find that

χ2
lines

χ2
ΛCDM

= .999

The interpretation of this result will be explained in the following section.
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5 Discussion

We have shown that for both the random circle and random line field models, their resulting

Cℓ spectra align with observed CMB data better than the standard ΛCDM model. As was

explained in Section 2.3, however, these models should be expected to result in an improved

fit on account of their additional free parameters. A model with additional parameters

should always be expected to provide a stronger fit to data than one without. To determine

if the increase in fit to the CMB of our modifications is statistically significant or not; if the

additional fit is or is not just due to our free introduced parameters R and ρ and something

that may be physically significant, we now compute Bayes factors for both models. Doing

so results in the K values recorded in Table 2.

Random Circles Random Lines

χ2 .9301 .999

K 2.482 2.718

Table 2: Results table

When comparing the resulting Bayes factor values with Table 1, we quickly conclude that

although both of our models are able to fit observed CMB data better than the ΛCDM

model is capable of, this strengthened fit is insignificant. We can therefore conclude that the

additional fit of these modifications tell us nothing about how robust the motivating physical

principles behind them are. This is all to say that neither modification explains the CMB

better than the more simple ΛCDM model, and we can therefore conclude that these more

exotic structures in the CMB do not exist.

These conclusions make a good deal of sense when considering the optimal ρ values for

both models, especially for the random line model. In both cases, the optimal fit from these

modifications resulted from making ρ extremely large, and since Pmod(k) ∝ ρ−1 for both

models, this essentially neglected the contribution of the modifications to the total power

spectrum.
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Our Bayes factor results are of some surprise, however, since the additional fit that comes

from the random line model is greater than that of the random circle model. One would

expect that the oscillations introduced into the random circle power spectrum by the zeroth-

order Struve function in Eq. (12) would allow the peaks of the CMB to be better fit. Because

the random circle model is reported to result in a better fit to the observed data over the

random line model according to each’s χ2 value, the gain in Bayes factor of the random line

model could be called into question as just being the result of computational error, especially

in the sampling technique used to approximate the posterior distribution for reach model.

Although we have determined that neither modifications result in significant fits to CMB

data, the optimized radius parameter value of the random circle field deserves some attention

before moving on to the conclusions of this work because it corresponds to a reasonable

cosmological scale. To give a sense of our optimized R value of .652 Mpc, the universe had

a radius of 42 million light years [20], which corresponds to 12.87 Mpc, at the time of the

CMB.

6 Conclusion

We have considered the effect of including additional structure in the CMB’s power spectrum,

focusing on the addition of random circle and random line fields. We have shown that such

modifications do result in a strengthened fit to CMB data, but such an increased fit has been

shown to not be significant beyond what is expected from the addition of free parameters R

and ρ in our models.

A direction for future work would be considering the influence of a random circle field

where the radii of the circles are not constant, as we have considered in this work. Doing

so would introduce a probability distribution over the possible radii values for each circle in

the field to be sampled from, and a correction function for such a field has been derived in

[18].
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Suggesting to determine how to make our modifications correctly incorporate cosmological

physics so that our density parameter carries the proper units and so that it has a more rea-

sonable value would be another direction of future research, but because we have shown these

models offer no significant improvement in fit to the CMB data, such a research direction

will not be productive. We proceeded in this work while accepting the glaring problem with

our density parameter because the goal of this work was primarily to determine whether or

not we could find any reason to support the belief that the CMB’s power spectrum does, in

fact, require modifications beyond the simple power law of ΛCDM. Because we proceeded

without giving attention to the cosmological physics that must necessarily be at play and

assumed such corrections would ultimately be absorbed into our ρ factor, our results confi-

dently tell us that pursuing research in this direction will not be productive no matter what

the additional cosmological constants look like that eventually become separated out of ρ, at

least given our current observation of the CMB. If we had attempted to import the proper

cosmological physics early on, this might not have allowed us to make such a general claim as

any model with random circle or random line field modifications to the CMB power spectrum

is not supported by current CMB data.
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A Two-Point Correlation Function of Uncorrelated

Field

Using Eq. (2)

ξ2(|ri − rj|) =
1

V

∫
(ϕ(ri)− ϕ̄)(ϕ(rj)− ϕ̄)d3x

When this is expanded and the fact that integrating over the whole field, scaled by its volume

returns the mean field value;

ϕ̄ :=
1

V

∫
ϕ(ri)d

3x,

we get

ξ2(|ri − rj|) =
1

V

∫
ϕ(ri)ϕ(rj)d

3x− ϕ̄2. (15)

Because the field is uncorrelated, the expectation value of the field at two separate points

will always return zero, giving us

ξ2(|ri − rj|) = δij − ϕ̄2.

B Fourier Transform of Two-Point Correlation Func-

tion:

Take Fourier transform

ϕ(r) =
1

(2π)3

∫
ϕ(k)eik·rd3k (16)

So if we define r′ = r +∆r, we get

ξ2(∆r) = ⟨ϕ(r)ϕ(r +∆r)⟩ =
〈

1

(2π)3

∫
ϕ(k)eik·rd3k

1

(2π)3

∫
ϕ(k′)e−ik′·(r+∆r)d3k′

〉
(17)

using the fact that ξ2(∆r) is a real-valued function, which requires the complex conjugate
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to be taken of the F{ϕ(r +∆r)} term.

Using the Wiener-Khinchin Theorem for random variables in 3D, ⟨ϕ(k)ϕ(k′)⟩ =

(2π)3δ3(k − k′)P (k) [21], we get

ξ2(∆r) =
1

(2π)3

∫ ∫
δ3(k − k′)P (k)eik·re−ik′·(r+∆r)d3k′d3k. (18)

Integrating over the δ3(k − k′) term results in

ξ2(∆r) =
1

(2π)3

∫
P (k)e−ik·∆rd3k. (19)

Finally taking the inverse Fourier transform of this expression, we’re left with

P (k) =
1

(2π)3

∫
ξ2(r)e

ik·rd3r, (20)

which tells us how to arrive at a powr spectrum for a field given its correlation function.

C Expressing the Power Spectrum in Spherical Coor-

dinates

Beginning with our three-dimensional expression for the power spectrum in Cartesian coor-

dinates,

P (k) =
1

(2π)3

∫
ξ2(r)e

ik·rd3r, (21)

we use the typical integration conversion technique,

P (k) =
1

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

ξ2(r)e
ik·rr2 sin θdϕdθdr. (22)
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The ϕ integral gives us a factor of 2π, and we use the definition of the dot product in our

exponential term:

P (k) =
1

(2π)2

∫ ∞

0

∫ π

0

ξ2(r)e
ikr cos θr2 sin θdϕdθdr. (23)

Using the substitution u = cos θ and using the complex exponential definition of sin(kr), we

get

P (k) =
1

(2π)2

∫ ∞

0

ξ2(r)
2 sin(kr)r

k
dr. (24)

D Deriving the Angular Power Spectrum from Initial

Fluctuations

aℓm =

∫
ϕ(r)Y ∗

ℓm(n̂)dΩ (25)

Using the Fourier transform of ϕ(r)

aℓm =
1

(2π)3

∫ ∫
ϕ(k)Y ∗

ℓm(n̂)e
ik·r d3k dΩ (26)

Using the plane wave expansion:

eik·r = 4π
∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓjℓ(k · r)Yℓm(r̂)Y
∗
ℓm(k̂) (27)

where the spherical Bessel function jℓ(kr) is defined as:

jℓ(kr) =

√
π

2kr
Jℓ+1/2(kr) (28)

aℓm =
4π

(2π)3

∫ ∫
ϕ(k)Y ∗

ℓm(n̂)
∞∑

ℓ′=0

ℓ′∑
m=−ℓ′

iℓ
′
jℓ′(k · r)Yℓ′m′(r̂)Y ∗

ℓ′m′(k̂) d3k dΩ (29)

29



Using the fact that ∫
Y ∗
ℓm(n̂)Yℓ′m′(n̂)dΩ = δℓℓ′δmm′ , (30)

this gives us

aℓm =
4π

(2π)3

∫
ϕ(k)

∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓjℓ(k · r)Y ∗
ℓm(k̂) d

3k (31)

Now take ⟨|aℓm|2⟩, using ⟨ϕ(k)ϕ(k′)⟩ = (2π)3δ3(k − k′)P (k):

〈
|aℓm|2

〉
=

4π

(2π)3

∫ ∫
P (k)δ3(k − k′)

∑
ℓℓ′

∑
mm′

iℓjℓ(k · r)Y ∗
ℓm(k̂)i

ℓ′jℓ′(k
′ · r)Yℓ′m′(k̂′) d3k′d3k

(32)〈
|aℓm|2

〉
=

4π

(2π)3

∫
P (k)

∑
ℓℓ′

∑
mm′

iℓjℓ(k · r)Y ∗
ℓm(k̂)i

ℓ′jℓ′(k · r)Yℓ′m′(k̂) dΩdk (33)

〈
|aℓm|2

〉
=

4π

(2π)3

∫
P (k)

∑
ℓℓ′

∑
mm′

iℓjℓ(k · r)iℓ′jℓ′(k · r)δℓℓ′δmm′ dk (34)

〈
|aℓm|2

〉
=

4π

(2π)3

∫
P (k)

∑
ℓ

∑
m

i2ℓj2ℓ (k · r) dk (35)

Since i2ℓ = 1,

Cℓ =
4π

(2π)3

∫
P (k)j2ℓ (kr) dk (36)

This tells us that given a power spectrum P (k), we can generate an angular power spectrum

C(ℓ) using this integral!
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