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Abstract

(this is not my actual abstract) My thesis will be on adding modifications to the comic

microwave background’s angular power spectrum. There is lots of literature on going

from a regular power spectrum P (k) of the early universe’s fluctuations to the observed

Cℓ spectrum that we can now observe well. The primordial fluctuations, captured by

P (k), are taken to be a power law characterized by an amplitude As and a scalar spectral

index ns. I will add effects to this P (k) from variety of objects, such as random circles,

random straight lines, and concentric circles. These added effects will come with a few

parameters whose optimal values I will determine by minimizing the error between the

resulting Cℓ spectrum model, which I will calculate using the CAMB Python package,

and observed CMB data from the Planck satellite (or I will use newer data if I can find

some... Planck data is currently all that I have). Once this is done, I will make comments

on the presence or absence (very likely the absence) of these added features in the universe

and the scales that one would need to probe today in order to determine if they exist or

not.
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1 Introduction

2 Background Material

2.1 Correlation Functions and Power Spectra

Two point correlation function ξ2(∆r) between two points r and r′ is defined as the expec-

tation value of the field evaluated at two separate points;

ξ2(∆r) = ⟨ϕ(r)ϕ(r +∆r)⟩ . (1)

Given some point r0 in a field ϕ(r), the two-point correlation function tells you how likely

you are to find the same field value at a separate point r0+∆r. For a completely uncorrelated

field, the correlation function becomes

ξ2(|ri − rj|) = ⟨ϕ(ri)ϕ(rj)⟩ = δij,

in other words, knowing ϕ(ri) tells us no information about ϕ(rj), which is the definition of

an uncorrelated, or random, field. .

In contrast, the two-point correlation function for a completely uniform field just returns

the square of the field value,

ξ2(|ri − rj|) = ⟨ϕ(ri)ϕ(rj)⟩ = ϕ2
0,

since ϕ(ri) = ϕ0 for all i.

The two-point correlation function, Eq. (1), can be defined using the expectation value’s

spatial integral, which gives us

ξ2(∆r) =
1

V

∫
ϕ(r)ϕ(r +∆r) d3x. (2)
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If we want to describe the regularity of some field in terms of its spatial frequencies, we take

the Fourier transform of Eq. (2) and use some tricks common in Fourier analysis to arrive

at

ξ2(∆r) =
1

(2π)3

∫
P (k)e−ik·∆rd3k. (3)

If we are given a correlation function for a field and instead want to arrive at its power

spectrum, we take the inverse of Eq. (3) to find

P (k) =
1

(2π)3

∫
ξ2(r)e

ik·rd3r (4)

This tells us that the two-point correlation function ξ2(∆r) and the power spectrum P (k)

are Fourier pairs. The derivation of Eq. (3) is given in Appendix A.

2.2 Cosmological Physics and the Cosmic Microwave Background

Radiation

The theory of cosmic inflation, the leading class of models that describe the very early phase

of our universe’s development1, was originally posed in 1981 [1] as a modification to the

standard big bang model, motivated by the standard theory’s flaws that become relevant

when extrapolating it back to very early times. Inflation posits that the early universe

underwent a period of exponential expansion driven by the dynamics of a scalar field ϕ(r, t),

called the inflaton. Under inflation, the scale of the universe increased by an enormous

amount, around 1050 times greater than what is predicted by standard cosmology [5].

Given the exponential expansion described by inflation, the inflaton field ϕ(x, t) begins as

a quantum field, subject to quantum fluctuations. Quantum fluctuations exist on impercep-

tible scales, but under the process of inflation, these primordial fluctuations were stretched

astronomical scales, eventually being “frozen in” as classical density fluctuations δρ(x) which

formed the seeds for cosmic structure.

1See [1, 2, 3, 4] for foundational papers in the theory of inflation.
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The cosmic microwave background radiation (CMB), the first light released from the

universe was first serendipitously discovered in 1964 by Arno Penzias and Robert Wilson

[6]. Many telescopes and observational facilities have since been built to precisely measure

this radiation, with the first, called the Cosmic Microwave Background Explorer (COBE),

telescope launched in 1989 [7]. With these measurements, with small deviations from this

mean slowly being discovered with advancements in observational , as Fig. 1

Figure 1: Cosmic microwave background temperature anisotropies as measured by COBE

in 1990 [8], WMAP in 2003 [9], and the Planck satellite in 2018 [10] demonstrate the slow

emergence of anisotropies from T = 2.72548± 0.00057K.

As we have more confidently probed the CMB, we have discovered there to small deviations
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away from the mean temperature (quantify these variations here), caused by the primordial

fluctuations. These anisotropies are ultimately led to the formation of large-scale structure

and are therefore responsible for the development of life.

Modeling the CMB is vital to understanding the early stages of the universe, as this is

the only current observational evidence of this stage2. To model the CMB, it is standard

in cosmology to plot the angular power spectrum of the perturbations, denoted C(ℓ), where

the multipole moment ℓ is the angular analog of wavenumber k, since the CMB is ultimately

a three-dimensional field.

Given a power spectrum P (k), one can project this onto a angular spectrum using the

relation

Cℓ =
4π

(2π)3

∫
P (k)j2ℓ (kr) dk, (5)

which is derived in Appendix B

In standard inflationary cosmology, the primordial power spectrum P(k) is modeled as a

power law with a free amplitude A and spectral index ns;

P(k) = As

(
k

k0

)1−ns

. (6)

From current CMB observations, we have determined As = and ns =. Intuitively, this power

law tells us that (what? That there is no clearly defined structure?)

2.3 Bayesian Statistics

(maybe I should add some motivation here? Or should I just define Bayes

theorem?) Bayes theorem states that

P (Θ|D) =
P (Θ)P (D|Θ)

P (D)
. (7)

2Cite papers on primordial GWs. Kamionkowski’s first paper.
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Where P (Θ), called the prior distribution, represents our prior knowledge about the values

that our parameters of interest Θ could take on. When we have no knowledge about our

parameters Θ, a constant prior distribution is chosen since this equally weights all possible

parameter values.

P (D|Θ) is called the likelihood, which represents the probability of generating the observed

data D given model parameters Θ and is often written as L(Θ)3.When measurements made

to construct the data are made up of random, independent samples, the central limit theorem

is used to state that the likelihood for these processes should be a Gaussian distribution;

L(Θ) ∝ exp

(
−
∑
i

(
D(xi)−M(xi)

)2
2σ2

i

)
, (8)

P (D) is called the evidence, which represents the probability of seeing the data under all

possible parameter values;

P (D) =

∫
P (D|Θ)P (Θ)dΘ. (9)

The evidence acts as a normalizing factor and is typically ignored in techniques that

sample from the likelihood and prior, such as Markov chain Monte Carlo (MCMC) tech-

niques(should I define this too or just cite resources on it?). Sampling techniques

are especially useful when the model parameters make up a high dimensional space, which

makes the integral in Eq. (9) very computationally expensive.

The result of Eq. (7), the posterior distribution P (Θ|D) tells us the probability parameter

values explain the given data. Achieving a value distribution for each parameter is the goal

of Bayesian statistics, for this tells us which parameter values most likely fit the given data.

When the posterior cannot be directly evaluated, it is often approximated using MCMC

sampling.

(explain what the Bayes factor is and relate it Occam’s razor)

3It’s crucial to state that the likelihood is not a probability distribution for parameter values of Θ. It is
a function f(Θ) that quantifies how well the parameters describe the observed data.
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K =
P (Θmod|D)

P (ΘΛCDM |D)

P (ΘΛCDM)

P (Θmod)
(10)

3 Procedures

This thesis will investigate the influence of additional structure on the primordial power

spectrum by comparing the resulting Cℓ spectrum that’s generated with observational data

from the Planck satellite, which is openly provided by the Planck Legacy Archive. The

two-point correlation function has been derived for a variety of random fields, such as those

of lines and concentric circles in [11]. Given these correlation functions, I will first derive

their corresponding P (k). I then construct a total modified primordial power spectrum

P ′(k) = P (k) + P(k) where P(k) is the standard primordial power spectrum given in Eq.

(6), and use the Code for Anisotropies in the Microwave Background (CAMB) Python

package [12] to generate resulting modified angular power spectra C ′
ℓ. Given the set of

modified angular power spectra that result from this procedure for each added ξ2(∆r), I then

plot these against the spectrum generated by standard power-law inflationary cosmology in

regards to their fit with Planck’s data.

To determine the goodness-of-fit for these modifications, I first carry out a Bayesian anal-

ysis on the free parameters of each specific model to find their optimal values. With these,

I then compute a Bayes factor with the power law data to quantify how likely the modified

models explain the observed CMB data.

To perform Bayesian analysis with the goal of finding the optimal values for the modi-

fied spectrum parameters, which are the density of circles ρ and their radii R in the case

of the identical circle field, we assume uniform priors on both of these parameters over a

range (I need to justify why the range I’m using is good) since we have no prior

knowledge of what value these should take. We also assume the likelihood follows the expo-

nential distribution given in Eq. (8) because CMB measurements are taken randomly and
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independently.

Because we will evaluate the likelihood and priors computationally in Python, we can use

a MCMC sampler rather than additionally computing the evidence integral, as explained in

the background section on Bayesian statistics.

To determine how likely these modifications to the primordial power spectrum better

explain the angular power spectrum of the CMB, I will finally compute the Bayes factor, as

defined in the Background Material section. (will probably be doing this without any

Python packages. Haven’t gotten to this point yet, though, so this will be added

soon)

3.1 Random Circle Field

For example, take the two-point correlation function for a random field of identical circles

as derived in [11], given as

ξ2(r) =
1

πρr
√
1−

(
r
2R

)2 (11)

where ρ is the density of these circles and R is their fixed radius. Using Eq. (4) to compute

the power spectrum of this field, we find that

P◦(k) =
1

(2π)3

∫ 2R

0

eikr

πρr
√
1−

(
r
2R

)2dr = R

2πkρ
J0(kR)2 (12)

where the integral’s bounds come from the range of validity for the correlation function to

hold.

The identical circle field power spectrum plotted on the scale relevant for the CMB is

compared to the standard power law spectrum in Fig. 2.
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Figure 2: The power spectrum generated by the field of random circles compared against

the typical power law spectrum.

To implement this modification into the CAMB code, we write the full power spectrum

as a sum of the standard power law and the result of Eq. (12):

P ′(k) = P(k) +
R

2πkρ
J0(kR)2. (13)

3.2 Concentric Circle Field

... I will add a procedure similar to the one for random circles for each modification I

eventually add (will derive the P (k) for each added object in these sections)
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4 Results

Figure 3: Model with nonideal parameters
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Figure 4: Caption

Adds odds ratio. Calculates how much more likely is an additional model better than the

standard model. Typically want Bayes factor/odds ratio of around 8 (that it would be 8

times more likely that the modifications better explain the data than the standard model)

5 Discussion

... Probably not likely that any of these modifications better explain the data than standard

cosmology. Explain using the computed Bayes factor.

6 Conclusion
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A Fourier Transform of Two-Point Correlation Func-

tion:

Take Fourier transform

ϕ(r) =
1

(2π)3

∫
ϕ(k)eik·rd3k (14)

So if we define r′ = r +∆r, we get

ξ2(∆r) = ⟨ϕ(r)ϕ(r +∆r)⟩ =
〈

1

(2π)3

∫
ϕ(k)eik·rd3k

1

(2π)3

∫
ϕ(k′)e−ik′·(r+∆r)d3k′

〉
(15)

using the fact that ξ2(∆r) is a real-valued function, which requires the complex conjugate

to be taken of the F{ϕ(r +∆r)} term.

Using the Wiener-Khinchin Theorem for random variables in 3D, ⟨ϕ(k)ϕ(k′)⟩ =

(2π)3δ3(k − k′)P (k) [13], we get

ξ2(∆r) =
1

(2π)3

∫ ∫
δ3(k − k′)P (k)eik·re−ik′·(r+∆r)d3k′d3k. (16)

Integrating over the δ3(k − k′) term results in

ξ2(∆r) =
1

(2π)3

∫
P (k)e−ik·∆rd3k (17)

B Deriving the Angular Power Spectrum from Initial

Fluctuations

aℓm =

∫
ϕ(r)Y ∗

ℓm(n̂)dΩ (18)

Using the Fourier transform of ϕ(r)

aℓm =
1

(2π)3

∫ ∫
ϕ(k)Y ∗

ℓm(n̂)e
ik·r d3k dΩ (19)
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Using the plane wave expansion:

eik·r = 4π
∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓjℓ(k · r)Yℓm(r̂)Y
∗
ℓm(k̂) (20)

where the spherical Bessel function jℓ(kr) is defined as:

jℓ(kr) =

√
π

2kr
Jℓ+1/2(kr) (21)

aℓm =
4π

(2π)3

∫ ∫
ϕ(k)Y ∗

ℓm(n̂)
∞∑

ℓ′=0

ℓ′∑
m=−ℓ′

iℓ
′
jℓ′(k · r)Yℓ′m′(r̂)Y ∗

ℓ′m′(k̂) d3k dΩ (22)

Using the fact that ∫
Y ∗
ℓm(n̂)Yℓ′m′(n̂)dΩ = δℓℓ′δmm′ , (23)

this gives us

aℓm =
4π

(2π)3

∫
ϕ(k)

∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓjℓ(k · r)Y ∗
ℓm(k̂) d

3k (24)

Now take ⟨|aℓm|2⟩, using ⟨ϕ(k)ϕ(k′)⟩ = (2π)3δ3(k − k′)P (k):

〈
|aℓm|2

〉
=

4π

(2π)3

∫ ∫
P (k)δ3(k − k′)

∑
ℓℓ′

∑
mm′

iℓjℓ(k · r)Y ∗
ℓm(k̂)i

ℓ′jℓ′(k
′ · r)Yℓ′m′(k̂′) d3k′d3k

(25)〈
|aℓm|2

〉
=

4π

(2π)3

∫
P (k)

∑
ℓℓ′

∑
mm′

iℓjℓ(k · r)Y ∗
ℓm(k̂)i

ℓ′jℓ′(k · r)Yℓ′m′(k̂) dΩdk (26)

〈
|aℓm|2

〉
=

4π

(2π)3

∫
P (k)

∑
ℓℓ′

∑
mm′

iℓjℓ(k · r)iℓ′jℓ′(k · r)δℓℓ′δmm′ dk (27)

〈
|aℓm|2

〉
=

4π

(2π)3

∫
P (k)

∑
ℓ

∑
m

i2ℓj2ℓ (k · r) dk (28)

Since i2ℓ = 1,

Cℓ =
4π

(2π)3

∫
P (k)j2ℓ (kr) dk (29)
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This tells us that given a power spectrum P (k), we can generate an angular power spectrum

C(ℓ) using this integral!
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